Math, asked by Anonymous, 5 months ago

Prove that:

 \\  \\   \bf\bigg [ \bigg( \frac{1}{2}    {\bigg)}^{2}  {\bigg]}^{3}  \times  \bigg( \frac{1}{3} {\bigg)}^{ - 4} \times  {3}^{ - 2}  \times  \frac{1}{6}  =  \frac{3}{128}


Sitααrα: Good Question!

Answers

Answered by ankita533333
24

Step-by-step explanation:

hope this will help you

Attachments:
Answered by CɛƖɛxtríα
87

Given:

\large\underline{\boxed{\tt{ { ({( \frac{1}{2} )}^{2} })^{3}  \times  {( \frac{1}{3}) }^{ - 4}  \times  {3}^{ - 2}  \times  \frac{1}{6}=\frac{3}{128} }}}

To prove:

L.H.S = R.H.S

Solution:

\large{\sf{L.H.S,}}

\large{\sf{ { ({( \frac{1}{2} )}^{2} })^{3}  \times  {( \frac{1}{3}) }^{ - 4}  \times  {3}^{ - 2}  \times  \frac{1}{6} }}

By using, \large{\bold{ {(( {a})^{b} )}^{c}  =  {(a)}^{b \times c} }}

\Large\implies{\sf{ {( \frac{1}{2}) }^{6} \times  {( \frac{1}{3}) }^{ - 4}  \times  {3}^{ - 2}  \times  \frac{1}{6}}}

By using, \large{\bold{ { (\frac{a}{b} )}^{ - c}  =  {( \frac{b}{a} )}^{c} }}

\Large\implies{\sf{{( \frac{1}{2}) }^{6} \times {( \frac{3}{1} )}^{4} \times  {3}^{ - 2}  \times  \frac{1}{6}}}

By using, \large{\bold{ {(a)}^{ - b}  =   {( \frac{1}{a}) }^{b} }}

\Large\implies{\sf{{( \frac{1}{2}) }^{6} \times {( \frac{3}{1} )}^{4} \times  {( \frac{1}{3} )}^{2} \times \frac{1}{6}}}

By using, \large{\bold{ { (\frac{a}{b} )}^{c}  = ( \frac{ {a}^{c} }{{b}^{c} } )}}

\Large\implies{\sf{ \frac{ {1}^{6} }{ {2}^{6} }  \times  \frac{ {3}^{4} }{ {1}^{4} }  \times  \frac{ {1}^{2} }{ {3}^{2} }  \times  \frac{1}{6} }}

\Large\implies{\sf{ \frac{1}{64}  \times  \frac{81}{1}  \times  \frac{1}{9}  \times   \frac{1}{6} }}

\Large\implies{\sf{ \frac{1}{64}  \times  \frac{9}{1}  \times  \frac{1}{1}  \times  \frac{1}{6} }}

\Large\implies{\sf{ \frac{1}{64}  \times  \frac{3}{1}  \times  \frac{1}{2} }}

\Large\implies{\sf{ \frac{3}{64 \times 2} }}

\Large\implies{\boxed{\sf{\red{\frac{3}{128}=R.H.S}}}}

\Large{\underline{\underline{\bold{\blue{Hence,\:proved!}}}}}

__________________________________


Sitααrα: Incredible! ★
CɛƖɛxtríα: Thnq so much :)
Anonymous: Pretty Impressive!
CɛƖɛxtríα: Thnku

:)
ᏞovingHeart: Cool !
CɛƖɛxtríα: Thnkuuh..!! ♡
ᏞovingHeart: Wellodidu ♥
Similar questions