Prove that
Answers
Answered by
7
Prove that ;
(cosX + cosY)² + (sinX - sinY)²
= 4cos²(X + Y)/2
→ (cosX + cosY)² + (sinX - sinY)²
= 4cos²(X + Y)/2
→ (cosX + cosY)² + (sinX - sinY)²
= 4cos²(X + Y)/2
→ cos²X + cos²Y + 2.cosX.cosY + sin²X - sin²Y - 2.sinX.sinY = 4cos²(X + Y)/2
→ cos²X + sin²X + cos²Y + sin²Y + 2(cosX.cosY + sinX.sinY) = 4cos²(X + Y)/2
→ 1 + 1 + 2cos(X + Y) = 4cos²(X + Y)/2
→ 2 + 2cos(X + Y) = 4cos²(X + Y)/2
→ 2[1 + cos(X + Y)] = 4cos²(X + Y)/2
→ 4cos²(X + Y)/2 = 4cos²(X + Y)/2
→ L.H.S. = R.H.S
Answered by
24
The identities to be used are:
Now we can solve:
All done!
Thankyou :)
Similar questions