Prove that
Answers
Answered by
6
To prove:
(cosa + cosy)? + (sinæ – siny)? = 4 cos (")
Solution:
Consider,
(cosa + cosy)2 + (sinx - siny)?
Using
(a+b)² = a? +62 + 2ab =
(a b)? = a? + b? - = 2ab
(cos²x + cos²y + 2 cosx cosy) + (sin-x + siny - 2 sinx siny)
= (cos-z + sin’2) + (cos-y + sin’y) + 2(cosx cosy - sinx siny)
Using cose + sinºe
=1+1+2(cosx cosy - sinx siny)
= 2 + 2 cos(x + y)
= 2(1+ cos(x + y))
We know that
cos A = 2 cos² А2 -1= 1+ cos A = 2 cos
2(2cos?(프)) cOS ,2(x+y
= 4 cos (") x+y
2 (cosx + cosy)? + (sinx – siny)² = 4 cos
CAN BE FRIEND PlZ
yes so liket this answer
no so don,t like this answer
Answered by
0
Answer:
Attachments:
Similar questions