Math, asked by ItzVash003, 5 months ago

Prove that
 \bf{ \frac{cosA - sinA+1}{cosA + sinA - 1} } = cosecA + cotA

Answers

Answered by prabhas24480
3

\huge\star\underline\mathfrak\green{Answer:-}

cosA-sinA+1/cosA+sinA-1

=(cosA-sinA+1)(cosA+sinA+1)/(cosA+sinA-1)(cosA+sinA+1)

=(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA+cosA-sinA+1)/{(cosA+sinA)²-(1)²}

=(cos²A-sin²A+2cosA+1)/(cos²A+2cosAsinA+sin²A-1)

={cos²A+2cosA+(1-sin²A)}/(1+2cosAsinA-1) [∵, sin²A+cos²A=1]

=(cos²A+2cosA+cos²A)/2cosAsinA

=(2cos²A+2cosA)/2cosAsinA

=2cosA(cosA+1)/2cosAsinA

=(cosA+1)/sinA

=cosA/sinA+1/sinA

=cotA+cosecA

=cosecA+cotA (Proved)

Answered by Anonymous
30

Given Identity:-

  • \sf{\dfrac{CosA - SinA + 1}{CosA + SinA - 1} = CosecA + CotA}

To Proof:-

  • LHS = RHS

Solution:-

Taking LHS,

\sf{\dfrac{CosA - SinA + 1}{CosA + SinA - 1}}

Dividing both numerator and denominator by SinA

= \sf{\dfrac{\dfrac{CosA}{SinA} - \dfrac{SinA}{SinA} + \dfrac{1}{SinA}}{\dfrac{CosA}{SinA} + \dfrac{SinA}{SinA} - \dfrac{1}{SinA}}}

Since, \sf{\dfrac{CosA}{SinA} = CotA}

And, \sf{\dfrac{1}{SinA} = CosecA}

Also, \sf{\dfrac{SinA}{SinA} = 1}

= \sf{\dfrac{CotA - 1 + CosecA}{CotA + 1 - CosecA}}

= \sf{\dfrac{CotA + CosecA - 1}{CotA - CosecA + 1}}

Now,

Since, \sf{1+Cot^2A = Cosec^2A}

Therefore,

\sf{1 = Cosec^2A - Cot^2A}

Putting 1 = Cosec²A - Cot²A in the numerator

\sf{\dfrac{CotA + CosecA - (Cosec^2A - Cot^2A)}{CotA - CosecA + 1}}

Now applying another identity i.e.,

a² - b² = (a + b) (a - b)

= \sf{\dfrac{CotA + CosecA - [(CosecA + CotA)(CosecA - CotA)]}{CotA - CosecA + 1}}

Taking (CotA + CosecA) as common,

= \sf{\dfrac{(CotA + CosecA)[1 - (CosecA - CotA)]}{CotA - CosecA + 1}}

= \sf{\dfrac{(CotA + CosecA)(1-CosecA + CotA)}{CotA - CosecA + 1}}

= \sf{\dfrac{(CotA + CosecA)(CotA - CosecA + 1)}{CotA - CosecA + 1}}

= \sf{\dfrac{(CotA + CosecA)(\cancel{CotA - CosecA + 1)}}{\cancel{CotA-CosecA + 1}}}

= \sf{CotA + CosecA}

Hence LHS = RHS (Proved)

______________________________________

Identities Used:-

  • 1 + Cot²A = Cosec²A
  • a² - b² = (a + b)(a - b)

  • \sf{\dfrac{CosA}{SinA} = CotA}

  • \sf{\dfrac{1}{SinA} = CosecA}

______________________________________

Explore More!!

Other identities:-

  • Sin²A + Cos²A = 1
  • 1 + Tan²A = Sec²A

  • \sf{\dfrac{SinA}{CosA} = TanA}

______________________________________

Similar questions