Prove that
Answers
cosA-sinA+1/cosA+sinA-1
=(cosA-sinA+1)(cosA+sinA+1)/(cosA+sinA-1)(cosA+sinA+1)
=(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA+cosA-sinA+1)/{(cosA+sinA)²-(1)²}
=(cos²A-sin²A+2cosA+1)/(cos²A+2cosAsinA+sin²A-1)
={cos²A+2cosA+(1-sin²A)}/(1+2cosAsinA-1) [∵, sin²A+cos²A=1]
=(cos²A+2cosA+cos²A)/2cosAsinA
=(2cos²A+2cosA)/2cosAsinA
=2cosA(cosA+1)/2cosAsinA
=(cosA+1)/sinA
=cosA/sinA+1/sinA
=cotA+cosecA
=cosecA+cotA (Proved)
Given Identity:-
To Proof:-
- LHS = RHS
Solution:-
Taking LHS,
Dividing both numerator and denominator by SinA
=
Since,
And,
Also,
=
=
Now,
Since,
Therefore,
Putting 1 = Cosec²A - Cot²A in the numerator
Now applying another identity i.e.,
a² - b² = (a + b) (a - b)
=
Taking (CotA + CosecA) as common,
=
=
=
=
=
Hence LHS = RHS (Proved)
______________________________________
Identities Used:-
- 1 + Cot²A = Cosec²A
- a² - b² = (a + b)(a - b)
______________________________________
Explore More!!
Other identities:-
- Sin²A + Cos²A = 1
- 1 + Tan²A = Sec²A
______________________________________