Math, asked by sajan6491, 5 hours ago

Prove that:-

 \bf \red{\sin( \frac{\pi}{2020} ) + \sin( \frac{3\pi}{2020} ) + \sin( \frac{5\pi}{2020} ) + ... + \sin( \frac{2019\pi}{2020} ) = \csc( \frac{\pi}{2020} ) }

Don't spam​

Answers

Answered by shadowsabers03
11

Consider the LHS.

\small\text{$\longrightarrow a=\sin\left(\dfrac{\pi}{2020}\right)+\sin\left(\dfrac{3\pi}{2020}\right)+\sin\left(\dfrac{5\pi}{2020}\right)+\,\dots\,+\sin\left(\dfrac{2019\pi}{2020}\right)\quad\dots(i)$}

Or,

\displaystyle\small\text{$\longrightarrow a=\sum_{r=1}^{1010}\sin\left(\dfrac{(2r-1)\pi}{2020}\right)$}

Multiplying both sides by \small\text{$2\sin\left(\dfrac{\pi}{2020}\right),$}

\displaystyle\small\text{$\longrightarrow 2a\sin\left(\dfrac{\pi}{2020}\right)=2\sin\left(\dfrac{\pi}{2020}\right)\sum_{r=1}^{1010}\sin\left(\dfrac{(2r-1)\pi}{2020}\right)$}

\displaystyle\small\text{$\longrightarrow 2a\sin\left(\dfrac{\pi}{2020}\right)=\sum_{r=1}^{1010}2\sin\left(\dfrac{(2r-1)\pi}{2020}\right)\sin\left(\dfrac{\pi}{2020}\right)\quad\dots(1)$}

We have, by product-to-sum identity,

\small\text{$\longrightarrow2\sin A\sin B=\cos(A-B)-\cos(A+B)$}

Taking \small\text{$A=\dfrac{(2r-1)\pi}{2020}$} and \small\text{$B=\dfrac{\pi}{2020},$}

\small\text{$\longrightarrow2\sin\left(\dfrac{(2r-1)\pi}{2020}\right)\sin\left(\dfrac{\pi}{2020}\right)=\cos\left(\dfrac{(r-1)\pi}{1010}\right)-\cos\left(\dfrac{r\pi}{1010}\right)$}

Then (1) becomes,

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=\sum_{r=1}^{1010}\left[\cos\left(\dfrac{(r-1)\pi}{1010}\right)-\cos\left(\dfrac{r\pi}{1010}\right)\right]$}

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=\sum_{r=1}^{1010}\cos\left(\dfrac{(r-1)\pi}{1010}\right)-\sum_{r=1}^{1010}\cos\left(\dfrac{r\pi}{1010}\right)\quad\dots(2)$}

We have,

  • \displaystyle\small\text{$\sum_{r=p}^qf(r)=\sum_{r=p-t}^{q-t}f(r+t)$}

Taking \small\text{$f(r)=\cos\left(\dfrac{(r-1)\pi}{1010}\right),\ p=1,\ q=1010,\ t=1,$} the first sum in RHS can be written as,

  • \displaystyle\small\text{$\sum_{r=1}^{1010}\cos\left(\dfrac{(r-1)\pi}{1010}\right)=\sum_{r=0}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)$}

Thus (2) becomes,

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=\sum_{r=0}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)-\sum_{r=1}^{1010}\cos\left(\dfrac{r\pi}{1010}\right)\quad\dots(3)$}

Take,

  • \displaystyle\small\text{$\sum_{r=0}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)=\cos\left(\dfrac{(0)\pi}{1010}\right)+\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)=1+\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)$}

[i.e. first term is taken out of the sum]

  • \displaystyle\small\text{$\sum_{r=1}^{1010}\cos\left(\dfrac{r\pi}{1010}\right)=\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)+\cos\left(\dfrac{1010\pi}{1010}\right)=\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)-1$}

[i.e. last term is taken out of the sum]

Then (3) becomes,

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=\left[1+\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)\right]-\left[\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)-1\right]$}

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=1+\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)-\sum_{r=1}^{1009}\cos\left(\dfrac{r\pi}{1010}\right)+1$}

\displaystyle\small\text{$\longrightarrow2a\sin\left(\dfrac{\pi}{2020}\right)=2$}

\displaystyle\small\text{$\longrightarrow a=\dfrac{1}{\sin\left(\dfrac{\pi}{2020}\right)}$}

\displaystyle\small\text{$\longrightarrow a=\csc\left(\dfrac{\pi}{2020}\right)\quad\dots(ii)$}

From (i) and (ii),

\small\text{$\longrightarrow\underline{\underline{\sin\left(\dfrac{\pi}{2020}\right)+\sin\left(\dfrac{3\pi}{2020}\right)+\sin\left(\dfrac{5\pi}{2020}\right)+\,\dots\,+\sin\left(\dfrac{2019\pi}{2020}\right)=\csc\left(\dfrac{\pi}{2020}\right)}}$}

Hence Proved!

Answered by Anonymous
22

\huge\bold \green{Thank \: You}

Attachments:
Similar questions