English, asked by llalonell, 4 months ago

Prove that,\bf \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta}}  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta}}  = 2 \: cosec \:  \theta

Answers

Answered by Anonymous
13

  \large{ \underline{ \underline{ \sf \blue{Required \: answer - }}}}

 \bf \sqrt{ \dfrac{1 + cos \: \theta}{1 - cos \: \theta}} + \sqrt{ \dfrac{1 - cos \: \theta}{1 + cos \: \theta}} = 2 \: cosec \: \theta

\large\bold{\underline{\underline{To \: Prove:-}}}

\bf \sqrt{ \dfrac{1 + cos \: \theta}{1 - cos \: \theta}} + \sqrt{ \dfrac{1 - cos \: \theta}{1 + cos \: \theta}} = 2 \: cosec \: \theta

\large\bold{\underline{\underline{Proof:-}}}

\implies \bf L.H.S. = \sqrt{ \dfrac{1 + cos \: \theta}{1 - cos \: \theta}} + \sqrt{ \dfrac{1 - cos \: \theta}{1 + cos \: \theta}}

Now, rationalize the denominator,

\implies \bf \bf \sqrt{ \dfrac{1 + cos \: \theta}{1 - cos \: \theta} \times \dfrac{1 + cos \: \theta}{1 + cos \: \theta} } + \sqrt{ \dfrac{1 - cos \: \theta}{1 + cos \: \theta} \times \dfrac{1 - cos \: \theta}{1 - cos \: \theta} }

Using identity in the denominator,

\boxed{ \bf{ \green{(a + b)(a - b) = {a}^{2} - {b}^{2} }}} </p><p>

\begin{gathered}\implies \bf \sqrt{ \dfrac{ {(1 + cos \: \theta)}^{2} }{ {(1)}^{2} - {(cos \: \theta)}^{2} } } + \sqrt{ \dfrac{ {(1 - cos \: \theta)}^{2} }{ {(1)}^{2} - {(cos \: \theta)}^{2} } } \\ \\ \\ \implies \bf \sqrt{ \dfrac{ {(1 + cos \: \theta)}^{2} }{ (1 - {cos \:}^{2} \theta )} } + \sqrt{ \dfrac{ {(1 - cos \: \theta)}^{2} }{ (1 - {cos}^{2} \: \theta)} } \\ \\ \\ \implies \bf \sqrt{ \dfrac{ {(1 + cos \: \theta)}^{2} }{ {sin}^{2} \theta } } + \sqrt{ \dfrac{ {(1 - cos \: \theta)}^{2} }{ {sin}^{2} \: \theta} } \\ \\ \\ \implies \bf \dfrac{1 + cos \: \theta}{sin \: \theta} + \dfrac{1 - cos \: \theta}{sin \: \theta} \\ \\ \\ \implies \bf \dfrac{(1 + cos \: \theta) + (1 - cos \: \theta)}{sin \: \theta} \\ \\ \\ \implies \bf \dfrac{1 + 1}{sin \: \theta} \\ \\ \\ \implies \bf \dfrac{2}{sin \: \theta}\end{gathered}

\large\bold{\underline{\underline{We \: Know \: That:-}}}

\: \: \bf \bullet \: \: \: cosec \: \theta = \dfrac{1}{sin \: \theta}

</p><p>\begin{gathered}\implies \bf 2 \: cosec \: \theta \\ \\ \\ \bf \implies R.H.S.\end{gathered}

Hence Proved !

Similar questions