Math, asked by Gripex, 5 months ago


Prove that

\ \Big(secA-tanA\Big)^2= \dfrac{1-sinA}{1+sinA}

Answers

Answered by Anonymous
43

To Prove :-

\\

\sf \ \Big(secA-tanA\Big)^2= \dfrac{1-sinA}{1+sinA}

\\

Proof :-

\\\\

\sf\ \ \ \ L.H.S \\

:\implies \sf \ \Big(secA-tanA\Big)^2\\\\

:\implies \sf \bigg(\dfrac{1}{cosA}-\dfrac{sinA}{cosA}\bigg)^2\\\\

\sf\bigg[\therefore\ secA=\dfrac{1}{cosA} \sf\ tanA= \dfrac{sinA}{cosA}\bigg]\\

 :\implies \sf \bigg(\dfrac{1-sinA}{cosA}\bigg)^2\\\\

 :\implies \sf \dfrac{\Big(1-sinA\Big)^2}{cos^2A}\\\\

 \sf\Big[(1-sinA)^2=(1-sinA)(1-sinA)\Big]\\\\

:\implies \sf \dfrac{\Big(1-sinA\Big)\Big(1-sinA\Big)}{1-sin^2A}\\\\

 \sf\Big[\therefore\ cos^2A=1-sin^2A \Big]\\\\

 :\implies \sf \dfrac{\Big(1-sinA\Big) \Big(1-sinA\Big)}{\Big(1+sinA\Big)\Big(1-sinA\Big)}\\\\

\sf\Big[\therefore\ a^2-b^2=(a+b)(a-b)\Big] \\\\

 :\implies\sf \dfrac{1-sinA}{1+sinA}\\\\

\sf\ \ \ \ R.H.S\\\\


Anonymous: Wow☃️
Anonymous: ❤️⚡
Answered by 0786alikamran
0

Answer:

hope it helps

Step-by-step explanation:

mark me as brainlist please

Attachments:
Similar questions