Math, asked by MathHacker001, 1 month ago

Prove that :

 \bigstar \rm{  \: \tan {}^{2}  \theta  -  \sin {}^{2}  \theta =  \sin {}^{4}    \theta \sec {}^{2} \theta  }
Need Quality answers.
Spammers stay away.​

Answers

Answered by Abhinav3583
1

Answer:

mark as BRAINLIEST answer✅✅

Attachments:
Answered by mathdude500
13

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: {tan}^{2}\theta  -  {sin}^{2}\theta  =  {sin}^{4}\theta  {sec}^{2}\theta

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: {tan}^{2}\theta  -  {sin}^{2}\theta

We know

\boxed{ \bf{ \: tanx =  \frac{sinx}{cosx}}}

So, using this identity, we get

\rm \:  =  \:\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  -  {sin}^{2}\theta

\rm \:  =  \:\dfrac{ {sin}^{2} \theta  -  {sin}^{2}\theta  {cos}^{2}  \theta}{ {cos}^{2} \theta}

\rm \:  =  \:\dfrac{ {sin}^{2} \theta(1  -  {cos}^{2}  \theta)}{ {cos}^{2} \theta}

We know,

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this identity, we get

\rm \:  =  \:\dfrac{ {sin}^{2} \theta  \times  {sin}^{2} \theta }{ {cos}^{2} \theta }

\rm \:  =  \:\dfrac{ {sin}^{4} \theta }{ {cos}^{2} \theta }

We know,

\boxed{ \bf{ \:  \frac{1}{cos\theta } = sec\theta }}

So, using this, we get

\rm \:  =  \: {sin}^{4}\theta  {sec}^{2}\theta

Hence,

\rm :\longmapsto\:\boxed{ \bf{ \:  {tan}^{2}\theta  -  {sin}^{2}\theta  =  {sin}^{4}\theta  {sec}^{2}\theta}}

Alternative Method :-

Consider, LHS

\rm :\longmapsto\: {tan}^{2}\theta  -  {sin}^{2}\theta

We know,

\boxed{ \bf{ \: tanx =  \frac{sinx}{cosx}}}

So, using this,

\rm \:  =  \:\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  -  {sin}^{2}\theta

\rm \:  =  \bigg[\:\dfrac{1}{ {cos}^{2} \theta }  - 1\bigg] {sin}^{2}\theta

\rm \:  =  \bigg[\: {sec}^{2} \theta   - 1\bigg] {sin}^{2}\theta

We know,

\boxed{ \bf{ \:  {sec}^{2}x -  {tan}^{2}x = 1}}

So, using this, we get

\rm \:  =  \bigg[\: {tan}^{2} \theta\bigg] {sin}^{2}\theta

\rm \:  =  \:\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  \times  {sin}^{2} \theta

\rm \:  =  \:\dfrac{ {sin}^{4} \theta }{ {cos}^{2} \theta }

\rm \:  =  \: {sin}^{4}\theta  {sec}^{2}\theta

Hence,

\rm :\longmapsto\:\boxed{ \bf{ \:  {tan}^{2}\theta  -  {sin}^{2}\theta  =  {sin}^{4}\theta  {sec}^{2}\theta}}

Similar questions