Math, asked by Anonymous, 4 days ago

Prove that :

 \bigstar \: \sf  \dfrac{a}{b}  =  \dfrac{cos \alpha - cos \beta}{sin \beta - sin \alpha}

Attachments:

Answers

Answered by mathdude500
25

\large\underline{\sf{Solution-}}

Let assume that the AB be the ladder whose top B is on the wall and A is on the ground.

As the ladder pulled away from the wall along the ground at a distance 'a' units, it top B slides down 'b' units.

Let ladder take the new position DE, where E is on the wall and D on the ground.

So, AD = a units and BE = b units.

Let assume that AB = DE = l units and CE = y units and AC = x units.

Now, In right angle triangle ABC

\rm \: sin\alpha  = \dfrac{BC}{AB}  \\

\rm \: sin\alpha  = \dfrac{y + b}{l}   -  -  - (1)\\

Also,

\rm \: cos\alpha  = \dfrac{AC}{AB}  \\

\rm \: cos\alpha  = \dfrac{x}{l}  -  -  - (2) \\

Now, In right triangle CDE

\rm \: sin\beta  = \dfrac{CE}{DE}  \\

\rm \: sin\beta  = \dfrac{y}{l}  -  -  - (3) \\

Also,

\rm \: cos\beta  = \dfrac{DC}{DE}  \\

\rm \: cos\beta  = \dfrac{x + a}{l}  -  -  - (4) \\

Now, Subtracting equation (3) from equation (1), we get

\rm \: sin\alpha  - sin\beta

\rm \: =  \: \dfrac{y + b}{l}  - \dfrac{y}{l}  \\

\rm \: =  \: \dfrac{y + b - y}{l}  \\

\rm \: =  \: \dfrac{b}{l}  \\

\rm\implies \:sin\alpha  - sin\beta  =  \dfrac{b}{l}  -  -  - (5) \\

Now, On Subtracting equation (2) from equation (4), we get

\rm \: cos\beta  - cos\alpha  \\

\rm \: =  \: \dfrac{a + x}{l}  - \dfrac{x}{l}  \\

\rm \: =  \: \dfrac{a + x - x}{l}   \\

\rm \: =  \: \dfrac{a}{l}   \\

So,

\rm\implies \:cos\beta  - cos\alpha  =  \: \dfrac{a}{l}  -  -  - (6)  \\

Now, on dividing equation (6) by (5), we get

\rm \: \dfrac{cos\beta  - cos\alpha }{sin\alpha  - sin\beta }  = \dfrac{a}{b}  \\

can be further rewritten as

\rm \: \dfrac{ - (cos\alpha  - cos\beta ) }{ - (sin\beta  - sin\alpha) }  = \dfrac{a}{b}  \\

\rm\implies \:\boxed{\sf{  \:\rm \:  \frac{cos\alpha  - cos\beta }{sin\beta  - sin\alpha } \:  =  \:  \frac{a}{b} \:  \: }} \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Answered by Anonymous
25

Given :

According to given figure AB and CD show or describe same ladder

Hence thier length must be equal or same

Assume that :

Consider the length of ladder be h

 \rm \therefore \: AB=CD = h

So,

 \rm \: In \:  \triangle AEB  \:  ,

 \rm \implies \:  \dfrac{AE}{AB}  =  \sin( \alpha )

 \rm \: and

\rm \implies \:  \dfrac{BE}{AB}  =   \cos( \alpha )

Now,

\rm \implies \: AE=   \: h \: \sin( \alpha )

\rm \implies \: BE=   \: h \: \cos( \alpha )

So,

\rm \: In \:  \triangle DEC  \:  ,

\rm \implies \:  \dfrac{DE}{CD}  =    \sin( \beta )

\rm \implies \:  \dfrac{CE}{CD}  =   \cos(  \beta  )

Now,

\rm \implies \: DE=   \: h \: \sin(  \beta  )

\rm \implies \: CE=   \: h \:  \cos( \beta )

Here,

\rm \implies \: \dfrac{a}{b}   =  \dfrac{BC}{AD}

\rm \implies \:   \dfrac{a}{b}  = \dfrac{CE-BE}{AE-DE}

\rm \implies \:   \dfrac{a}{b}  = \dfrac{(h \:  \cos( \beta ) - h \cos( \alpha ) ) }{(h \:  \sin( \alpha ) - h \:  \sin( \beta ) ) }

\rm \implies \:   \dfrac{a}{b}  = \dfrac{h \:  (\cos \beta -  \cos\alpha  )}{h \:  (\sin\alpha  - \sin \beta )}

\rm \implies \:   \dfrac{a}{b}  = \dfrac{ \:  \cos \beta -  \cos\alpha  }{\sin\alpha  - \sin \beta }

\rm \implies \boxed{  \dfrac{a}{b}  = \dfrac{ \:  \cos  \alpha -  \cos \beta   }{\sin \beta  - \sin  \alpha  }}

Hence proved

Attachments:
Similar questions