Math, asked by HelperToAll, 10 months ago

Prove that,

\bold{(\dfrac{i - \sqrt{3}}{i + \sqrt{3}})^{200} + (\dfrac{i +\sqrt{3}}{- i + \sqrt{3}})^{200}=-1}

where i² = - 1

Answers

Answered by Swarup1998
78
\boxed{\underline{\textsf{Method -- 1 ( De Moivre's ) :}}}

Now, \frac{i - \sqrt{3}}{i + \sqrt{3}}

{ We rationalise the denominator by multiplying both the numerator and the denominator by (i - √3) }

= \dfrac{(i-\sqrt{3})(i-\sqrt{3})}{(i + \sqrt{3})(i - \sqrt{3})}

= \dfrac{i^{2} - 2\sqrt{3}i + 3}{i^{2} - 3}

= \dfrac{- 1 - 2\sqrt{3}i + 3}{ - 1 - 3} , since i² = - 1

= \dfrac{2 - 2\sqrt{3}i}{-4}

= - \dfrac{1}{2}+ i \dfrac{\sqrt{3}}{2}

= cos\dfrac{2\pi}{3} + i\:sin\dfrac{2\pi}{3}

By De Moivre' theorem, we get

(cos\dfrac{2\pi}{3} + i\:sin\dfrac{2\pi}{3})^{200}

= cos\dfrac{400\pi}{3} + i\:sin\dfrac{400\pi}{3}

= cos\dfrac{2\pi}{3} + i\:sin\dfrac{4\pi}{3}

\to \small{\boxed{{(\dfrac{i - \sqrt{3}}{i + \sqrt{3}}})^{200}=cos\dfrac{2\pi}{3} + i\:sin\dfrac{4\pi}{3}}}
.....(1)

Also, \dfrac{i + \sqrt{3}}{- i + \sqrt{3}}

We rationalise the denominator by multiplying both the numerator and the denominator by (i + √3)

= - \dfrac{(i + \sqrt{3}) (i + \sqrt{3})}{(i - \sqrt{3}) (i + \sqrt{3})}

= - \dfrac{i^{2} + 2\sqrt{3}i + 3}{i^{2} - 3}

= - \dfrac{- 1 + 2\sqrt{3}i + 3}{ - 1 - 3 }

= - \dfrac{2 + 2\sqrt{3}i}{-4}

= \dfrac{1}{2} + i \dfrac {\sqrt{3}}{2}

= cos\dfrac{\pi}{3}+ i\:sin\dfrac{\pi}{3}

By De Moivre' theorem, we get

(cos\dfrac{\pi}{3}+ i\:sin\dfrac{\pi}{3})^{200}

= cos\dfrac{200\pi}{3}+ i\:sin\dfrac{200\pi}{3}

= cos\dfrac{2\pi}{3}+ i\:sin\dfrac{\pi}{3}

\to \small{\boxed{(\dfrac{i +\sqrt{3}}{- i + \sqrt{3}})^{200} = cos\dfrac{2\pi}{3}+ i\:sin\dfrac{\pi}{3}}}
.....(2)

Adding (1) and (2), we get

(\dfrac{i - \sqrt{3}}{i + \sqrt{3}})^{200} + (\dfrac{i +\sqrt{3}}{- i + \sqrt{3}})^{200}

= \small{cos\dfrac{2\pi}{3} + i\:sin\dfrac{4\pi}{3} + cos\dfrac{2\pi}{3}+ i\:sin\dfrac{\pi}{3}}

= 2cos\dfrac{2\pi}{3}<br />+ i (- sin\dfrac{\pi}{3}+ sin{\pi}{3})

= 2 cos\dfrac{2\pi}{3}

= 2*(-\dfrac{1}{2})

= - 1

Hence, proved.

\boxed{\underline{\textsf{Method -- 2 ( Cube roots of 1 ) :}}}

Now, \frac{i - \sqrt{3}}{i + \sqrt{3}}

{ We rationalise the denominator by multiplying both the numerator and the denominator by (i - √3) }

=\dfrac{(i-\sqrt{3})(i-\sqrt{3})}{(i + \sqrt{3})(i - \sqrt{3})}

=\dfrac{i^{2} - 2\sqrt{3}i + 3}{i^{2} - 3}

=\dfrac{- 1 - 2\sqrt{3}i + 3}{ - 1 - 3} , since i² = - 1

=\dfrac{2 - 2\sqrt{3}i}{-4}

=\dfrac{-1+ i\sqrt{3}}{2}

= ω, where ω is the imaginary cube root of 1

Also, \dfrac{i + \sqrt{3}}{- i + \sqrt{3}}

We rationalise the denominator by multiplying both the numerator and the denominator by (i + √3)

=- \dfrac{(i + \sqrt{3}) (i + \sqrt{3})}{(i - \sqrt{3}) (i + \sqrt{3})}

=- \dfrac{i^{2} + 2\sqrt{3}i + 3}{i^{2} - 3}

=- \dfrac{- 1 + 2\sqrt{3}i + 3}{ - 1 - 3 }

=- \dfrac{2 + 2\sqrt{3}i}{-4}

=-\dfrac{-1- i \sqrt{3}}{2}

= - ω², where ω² is the imaginary cube root of 1

Now, (\dfrac{i - \sqrt{3}}{i + \sqrt{3}})^{200} + (\dfrac{i +\sqrt{3}}{- i + \sqrt{3}})^{200}

= (ω)²⁰⁰ + (-ω²)²⁰⁰

= (ω³)⁶⁶ ω² + (ω³)¹³³ ω

= ω² + ω, since ω³ = 1

= - 1, since ω² + ω + 1 = 0

Hence, proved.

\underline{\textsf{Finding cube roots of 1}}

Let us take the following equation.

x³ = 1 .....(3)

⇒ x³ - 1 = 0

⇒ (x - 1) (x² + x + 1) = 0

Either x - 1 = 0 or, x² + x + 1 = 0

⇒ x = 1 , x² + x + 1 = 0

When, x² + x + 1 = 0, using Sridhar Acharya's formula, we get

x = \dfrac{-1\pm \sqrt{1^{2}-(4*1*1)}}{2*1}

= \dfrac{-1\pm \sqrt{(1-4)}}{2}

= \dfrac{-1\pm \sqrt{(-3)}}{2}

= \bold{\dfrac{-1\pm i\sqrt{3}}{2}} , since i² = - 1

If we consider ω = \dfrac{-1+ i\sqrt{3}}{2} , then it can be shown that

ω² = \dfrac{-1-i\sqrt{3}}{2}

Also ω being a root of (3) no. equation, we can write

ω² + ω + 1 = 0

Tomboyish44: Awesome answer!
Swarup1998: :)
Haezel: brilliant
Swarup1998: Thank you, ma'am. ☺
BloomingBud: O_o
BloomingBud: mind blowing
Swarnimkumar22: Ossom perfect answer
Steph0303: Great Latex Bhai :) Answer is Greatly explained ^_^
HelperToAll: WOW!!! Awesome :)
Similar questions