Math, asked by Anonymous, 3 months ago

Prove that :-



{ \boxed{ \bf{ \tan { }^{ - 1}  \frac{1}{5}  +  \tan {}^{ - 1}  \frac{1}{7}  +  \tan {}^{ - 1}  \frac{1}{3}  +  \tan {}^{ - 1}  \frac{1}{8}  =  \frac{ \pi}{4} }}}

Answers

Answered by sandy1816
9

Answer:

Your answer attached in the photo

Attachments:
Answered by BrainlyPopularman
22

TO PROVE :

 \\ \implies\bf{ \tan^{ - 1} \dfrac{1}{5} + \tan^{ - 1} \dfrac{1}{7} + \tan^{ - 1} \dfrac{1}{3} + \tan^{ - 1} \dfrac{1}{8} = \dfrac{\pi}{4}} \\

SOLUTION :

• Let's take L.H.S. –

 \\ \:  \:  = \:  \:  \bf\tan^{ - 1} \dfrac{1}{5} + \tan^{ - 1} \dfrac{1}{7} + \tan^{ - 1} \dfrac{1}{3} + \tan^{ - 1} \dfrac{1}{8}\\

• We know that –

 \\\implies \large \red{ \boxed{\bf\tan^{ - 1}(x) + \tan^{ - 1}(y) =  { \tan}^{ - 1} \left[ \dfrac{x + y}{1 - xy} \right]}}\\

• So that –

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{\dfrac{1}{5} + \dfrac{1}{7}}{1 -\dfrac{1}{5} \times \dfrac{1}{7}}\right] +{ \tan}^{ - 1} \left[ \dfrac{\dfrac{1}{3} + \dfrac{1}{8}}{1 -\dfrac{1}{3} \times \dfrac{1}{8}}\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{\dfrac{7 + 5}{5 \times 7}}{\dfrac{35 - 1}{5 \times 7}}\right] +{ \tan}^{ - 1} \left[ \dfrac{\dfrac{8 + 3}{3 \times 8}}{\dfrac{24 - 1}{3 \times 8}}\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{12}{34}\right] +{ \tan}^{ - 1} \left[ \dfrac{11}{23}\right]\\

• Again using formula –

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{ \dfrac{12}{34} + \dfrac{11}{23}}{1 -  \dfrac{12}{34} \times \dfrac{11}{23}} \right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{ \dfrac{12 \times 23 + 11 \times 34}{34 \times 23}}{ \dfrac{34 \times 23 - 12 \times 11}{34 \times 23} }\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{ 12 \times 23 + 11 \times 34}{34 \times 23 - 12 \times 11}\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{276+374}{782- 132}\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1} \left[ \dfrac{650}{650}\right]\\

 \\ \:  \:  = \:  \:  \bf{ \tan}^{ - 1}(1)\\

 \\ \bf\:  \:  = \:  \: \dfrac{\pi}{4} \\

 \\  \bf\:  \:  = \:  \:R.H.S.\\

 \\\longrightarrow \large \green{\boxed{ \bf Hence  \:  \: Proved}}\\

Similar questions