Math, asked by Anonymous, 18 days ago

Prove that:
 \boxed{\lim \limits_{x \to a} \dfrac{x^n - a^n}{x-a} = n x^{n-1} }
Without using L'Hôpital's rule.​

Answers

Answered by user0888
12

\Large\text{\underline{\underline{Question}}}

Prove that \displaystyle\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}=na^{n-1} without using L'Hôpital's rule.

\Large\text{\underline{\underline{Explanation}}}

Consider -

\text{$\cdots\longrightarrow f(x)=x^{n}-a^{n}.$}

By factor theorem, -

\text{$\cdots\longrightarrow f(a)=0\iff f(x)=(x-a)Q(x).$}

Assertion: -

\text{$\cdots\longrightarrow f(x)=(x-a)(x^{n-1}+ax^{n-2}+\cdots+a^{n-2}x+a^{n-1}).$ $\cdots[1]$}

Let us suppose \text{[1]} for the base case n=2. Then, -

\text{$\cdots\longrightarrow x^{2}-a^{2}=(x-a)(x+a).$}

Let us suppose n=k+1. Then, -

\text{$\cdots\longrightarrow x^{k+1}-a^{k+1}=(x-a)(x^{k}+ax^{k-1}+\cdots+a^{k-1}x+a^{k}).$}

\text{$\cdots\longrightarrow\boxed{\begin{aligned}x^{k+1}+&ak^{k}+\cdots+a^{k}x&=x(x^{k}+ax^{k-1}+\cdots+a^{k-1}x+a^{k})\\\\&ax^{k}+\cdots+a^{k}x+a^{k+1}&=a(x^{k}+ax^{k-1}+\cdots+a^{k-1}x+a^{k})\end{aligned}}$}

We now subtracted and obtained -

\text{$\cdots\longrightarrow x^{k+1}-a^{k+1}=(x-a)(x^{k}+ax^{k-1}+\cdots+a^{k-1}x+a^{k}).$}

Hence, the factorization is true for all natural numbers n\geq2 by mathematical induction.

By the property of limits, -

\text{$\cdots\longrightarrow\boxed{\displaystyle\begin{aligned}&\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}\\\\&=\lim_{x\to a}(x^{n-1}+ax^{n-2}+\cdots+a^{n-2}x+a^{n-1})\\\\&=a^{n-1}+a^{n-1}+\cdots+a^{n-1}+a^{n-1}\\\\&=na^{n-1}.\blacksquare\end{aligned}}$}

\Large\text{\underline{\underline{More information}}}

Let us recall that -

\text{$\cdots\longrightarrow\boxed{\displaystyle\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}=na^{n-1}.}$}

Let us find (x^{n})'. Then, -

\text{$\cdots\longrightarrow\displaystyle\boxed{\begin{aligned}&\lim_{h\to 0}\dfrac{(x+h)^{n}-x^{n}}{(x+h)-x}\\\\&=\lim_{h\to 0}\dfrac{(x+h)^{n-1}+(x+h)^{n-2}x+\cdots+(x+h)x^{n-2}+x^{n-1}}{h}\\\\&=x^{n-1}+x^{n-1}+\cdots+x^{n-1}+x^{n-1}\\\\&=nx^{n-1}.\end{aligned}}$}

Hence, we proved that the derivative of x^{n} is equal to nx^{n-1}.

Similar questions