Math, asked by diliptalpada66, 4 days ago

Prove That
\boxed{ \pink{  \bull\gg \gg  \tt |\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2}  \ll \ll \bull}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Consider, LHS

{\tt |\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}} \\

Let assume that

\rm \: \vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \\

So, Consider

\rm \: \vec{a} \times \hat{i} \\

\rm \: =  \:(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i} \\

\rm \: =  \:x(\hat{i} \times \hat{i}) + y(\hat{j} \times \hat{i}) + z(\hat{k} \times \hat{i}) \\

\rm \: =  \: - y\hat{k} + z\hat{j} \\

\rm\implies \: |\vec{a} \times \hat{i}|  =  \sqrt{ {y}^{2}  +  {z}^{2} }  \\

Hence,

\rm\implies \: |\vec{a} \times \hat{i}|^{2}   =  {y}^{2}  +  {z}^{2} -  -  - (1) \\

Now, Consider

\rm \: \vec{a} \times \hat{j} \\

\rm \: =  \:(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j} \\

\rm \: =  \:x(\hat{i} \times \hat{j}) + y(\hat{j} \times \hat{j}) + z(\hat{k} \times \hat{j}) \\

\rm \: =  \:x\hat{k} - z\hat{i} \\

\rm\implies \: |\vec{a} \times \hat{j}|  =  \sqrt{ {x}^{2}  +  {z}^{2} }  \\

Hence,

\rm\implies \: |\vec{a} \times \hat{j}|^{2}   =  {x}^{2}  +  {z}^{2} -  -  - (2) \\

Now, Consider

\rm \: \vec{a} \times \hat{k} \\

\rm \: =  \:(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{k} \\

\rm \: =  \:x(\hat{i} \times \hat{k}) + y(\hat{j} \times \hat{k}) + z(\hat{k} \times \hat{k}) \\

\rm \: =  \: - x\hat{j} + y\hat{i} \\

\rm\implies \: |\vec{a} \times \hat{k}|  =  \sqrt{ {x}^{2}  +  {y}^{2} }  \\

Hence,

\rm\implies \: |\vec{a} \times \hat{k}|^{2}   =  {x}^{2}  +  {y}^{2} -  -  - (3) \\

Now, on adding equation (1), (2) and (3), we get

{  \tt |\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}} \\

\rm \: =  \: {y}^{2} +  {z}^{2} +  {x}^{2} +  {z}^{2} +  {x}^{2}  +  {y}^{2}  \\

\rm \: =  \:2( {x}^{2} +  {y}^{2} +  {z}^{2}) \\

\rm \: =  \:2 \sqrt{( {x}^{2} +  {y}^{2} +  {z}^{2}) ^{2}}  \\

can be rewritten as

\rm \: =  \:2 \:  {( \sqrt{ {x}^{2}  +  {y}^{2} +  {z}^{2}  } ) \: }^{2}  \\

\rm \: =  \:2|\vec{a}|^{2} \\

Hence,

\rm\implies \:\boxed{\sf{  \:{\tt |\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2} = 2|\vec{a}|^{2}} \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{\sf{  \:\rm \: \hat{i} \times \hat{j} = \hat{k} \: }} \\

\boxed{\sf{  \:\rm \: \hat{j} \times \hat{k} = \hat{i} \: }} \\

\boxed{\sf{  \:\rm \: \hat{k} \times \hat{i} = \hat{j} \: }} \\

\boxed{\sf{  \:\rm \: \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: \vec{a} \times \vec{a} = 0 \: }} \\

\boxed{\sf{  \:\rm \: \vec{a} \times \vec{b} =  - \vec{b} \times \vec{a} \: }} \\

\boxed{\sf{  \:\rm \: \vec{a} \times \vec{b} = 0 \: \rm\implies \:\vec{a}  \: \parallel \: \vec{b} \: }} \\

Similar questions