Math, asked by maheshtalpada412, 8 days ago

Prove That :-
\colorbox{black}{\boxed{ \pink{ \bull\gg \gg \tt\displaystyle\tt \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin x| d x \ll \ll \bull}}}

Answer with proper explanation.

Don't Dare for spam.
→ Expecting answer from :
★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by amansharma264
40

EXPLANATION.

\sf \implies \displaystyle \int\limits^{\pi/2}_{-\pi/2}  | sin x| dx

As we know that,

Property of definite integrals.

\sf \implies \displaystyle \int\limits^{a}_{-a}  f(x) dx = \int\limits^a_0 f(x)  + f(-x) dx

\sf \implies \displaystyle 2 \int\limits^a_0 f(x)dx \ \ if \ f(-x) = f(x) \ \ ,f(x) \ is \ even

\sf \implies \displaystyle 0, \ if \ f(-x) = - f(x) \ \ , f(x) \ is \ odd

Using this concept in the equation.

We can write equation as,

\sf \implies \displaystyle 2\int\limits^{\pi/2}_{0}   (sin x) dx

As we know that,

⇒ ∫sin x dx = - cos x + c.

\sf \implies \displaystyle 2 \bigg[ - cos \ x \bigg]_{0}^{\pi/2}

As we know that,

In definite integration first we put upper limit then we put lower limit in the equation, we get.

\sf \implies \displaystyle -2 \bigg[ cos \ \frac{\pi}{2} - cos(0)  \bigg]

\sf \implies \displaystyle -2 (0 - 1). = 2.

\sf \implies \displaystyle \boxed{\int\limits^{\pi/2}_{-\pi/2}  | sin x| dx = 2}

                                                                                                                 

MORE INFORMATION.

Some important results.

\sf \implies \displaystyle \int\limits^{\pi/2}_{0}  ln(sin \ x) dx = \int\limits^{\pi/2}_{0} ln(cos \ x)dx = \frac{- \pi}{2} ln(2)

\sf \implies \displaystyle \int\limits^{\pi/2}_{0}  ln(cosec \  x) dx = \int\limits^{\pi/2}_{0} ln(sec \  x)dx = \frac{ \pi}{2} ln(2)

\sf \implies \displaystyle \int\limits^{\pi/2}_{0}  ln(tan \ x) dx = \int\limits^{\pi/2}_{0} ln(cot \  x)dx = 0

\sf \implies \displaystyle \int\limits^{\pi/4}_{0}  ln(1 + tan \ x) dx = \frac{\pi}{8} ln(2)

Answered by energypower904
27
  • please check the attached file
Attachments:
Similar questions