Math, asked by Anonymous, 10 months ago

Prove that
 { \cos }^{2} ( \frac{\pi}{10} ) +  { \cos }^{2} ( \frac{2\pi}{5} ) +  { \cos }^{2} ( \frac{3\pi}{5} ) +  { \cos }^{2} ( \frac{9\pi}{10}  = 2
send only handwriting Æñßwēr​

Answers

Answered by Rohan3635
0

Step-by-step explanation:

I CAN'T UNDERSTAND WHAT YOU HAVE WRITTEN

SORRY

Answered by GRANDxSAMARTH
31

Answer:-

LHS:-

 { \cos }^{2}  ( \frac{\pi}{10} ) +  { \cos }^{2} ( \frac{2\pi}{5} ) +  { \cos }^{2} ( \frac{3\pi}{5} ) +  { \cos }^{2} ( \frac{9\pi}{10} )

 =  { \cos }^{2} ( \frac{\pi}{10}) +  { \cos }^{2} ( \frac{\pi}{2}  -  \frac{\pi}{10} ) +  { \cos }^{2} ( \frac{\pi}{2}  +  \frac{\pi}{10})  +  { \cos }^{2} (\pi -  \frac{\pi}{10} )

 =  { \cos }^{2}( \frac{\pi}{10} ) +  { \sin }^{2} ( \frac{\pi}{10} ) +  { \cos }^{2} ( \frac{\pi}{10} ) +  { \sin }^{2} ( \frac{\pi}{10} )

 = 1 + 1

 = 2

=R.H.S.

Give ❤️

Similar questions