Prove that
Answers
Answer:
fixed diff beekeeping
Question :- Prove that , cos²5 + cos²10 + cos²15 + ______________ cos²90 = (17/2)
Solution :-
Solving LHS,
→ cos²5 + cos²10 + cos²15 + ______________ cos²90
Making pairs ,
→ (cos²5 + cos²85) + (cos²10 + cos²80) + (cos²15 + cos²75) + (cos²20 + cos²70) + (cos²25 + cos²65) + (cos²30 + cos²60) + (cos²35 + cos²55) + (cos²40 + cos²50) + cos²45 + cos²90
Now, we know that, cosA = sin(90 - A)
So,
- cos 85 = sin(90 - 85) = sin 5
- cos 80 = sin(90 - 80) = sin 10
- cos 75 = sin(90 - 75) = sin 15
- Similarly,
- cos 50 = sin(90 - 50) = sin 40
Putting these values we get,
→ (cos²5 + sin²5) + (cos²10 + sin²10) + (cos²15 + sin²15) + (cos²20 + sin²20) + (cos²25 + sin²25) + (cos²30 + sin²30) + (cos²35 + sin²35) + (cos²40 + sin²40) + cos²45 + cos²90
Now, we know that, cos²A + sin²A = 1 ,
Therefore,
→ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + cos²45 + cos²90
Now, Putting ,
- cos 45 = (1/√2)
- cos 90 = 0
→ 8 + (1/√2)² + 0
→ 8 + (1/2)
→ (16 + 1)/2
→ (17/2) = RHS. (Hence, Proved).
Learn More :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532?utm_source=android&utm_medium=share&utm_campaign=question
help me with this trig.
https://brainly.in/question/18213053?utm_source=android&utm_medium=share&utm_campaign=question