prove that
Answers
Answered by
0
cos3x can be written as cos(2x+ x) [ cos (a+b) = Cosa.Cosb -Sina.Sinb]
=Cos2xCosx - Sin2xSinx
=(2Cos²x - 1)Cosx - 2SinxCosxSinx [ Cos2x = 2Cos²x -1 ; Sin2x = 2Sinx.Cosx ]
Now multiplying the cosx with the term in the bracket,
=2Cos³x - Cosx - 2Cosx.Sin²x
= 2Cos³x - Cosx (1 + 2Sin²x)
= 2Cos³x - Cosx (1 + 2 ( 1 - Cos²x) [ Sin²x = 1-Cos²x]
= 2Cos³x - Cosx ( 1+ 2 - 2Cos²x)
Now adding the terms in the bracket,
=2Cos³x - Cosx (3 -2Cos²x)
=2Cos³x - 3Cosx + 2Cos³x
Now adding the like terms :
We get,
=4Cos³x - 3cosx (proved)
=Cos2xCosx - Sin2xSinx
=(2Cos²x - 1)Cosx - 2SinxCosxSinx [ Cos2x = 2Cos²x -1 ; Sin2x = 2Sinx.Cosx ]
Now multiplying the cosx with the term in the bracket,
=2Cos³x - Cosx - 2Cosx.Sin²x
= 2Cos³x - Cosx (1 + 2Sin²x)
= 2Cos³x - Cosx (1 + 2 ( 1 - Cos²x) [ Sin²x = 1-Cos²x]
= 2Cos³x - Cosx ( 1+ 2 - 2Cos²x)
Now adding the terms in the bracket,
=2Cos³x - Cosx (3 -2Cos²x)
=2Cos³x - 3Cosx + 2Cos³x
Now adding the like terms :
We get,
=4Cos³x - 3cosx (proved)
Answered by
0
use Cos A+B = cos A cos B - SIN A sin B
Cos 3x = cos (2x+x) = cos 2x cos x - sin 2x sin x
= (2 cos² x - 1) cos x - 2 sinx cos x sinx
= 2 cos³ x - cos x - 2 sin² x cos x
= 2 cos³ x - cos x - 2 (1 - cos² x ) cos x
= 2 cos² x - cos x - 2 cos x + 2 cos ³ x
= 4 cos³ x - 3 cos x
=========================================
From R H S to L H S
use 2 cos² x - 1 = cos 2x
R H S = cos x (4 cos² x - 2 - 1) = cos x ( 2 cos 2x - 1 )
= 2 cos x cos 2x - cos x = [ cos 3x + cos x ] - cos x
= cos x = L H S
Cos 3x = cos (2x+x) = cos 2x cos x - sin 2x sin x
= (2 cos² x - 1) cos x - 2 sinx cos x sinx
= 2 cos³ x - cos x - 2 sin² x cos x
= 2 cos³ x - cos x - 2 (1 - cos² x ) cos x
= 2 cos² x - cos x - 2 cos x + 2 cos ³ x
= 4 cos³ x - 3 cos x
=========================================
From R H S to L H S
use 2 cos² x - 1 = cos 2x
R H S = cos x (4 cos² x - 2 - 1) = cos x ( 2 cos 2x - 1 )
= 2 cos x cos 2x - cos x = [ cos 3x + cos x ] - cos x
= cos x = L H S
Similar questions