Math, asked by shivtejbro, 1 month ago

PROVE THAT:





 Cos(\frac{\pi}{2} - θ)=Sinθ

Answers

Answered by satnamsingh08382
2

Answer:

sorry g i dont know the answer of ur question..

Answered by saniyashk76
1

 cos( \frac{\pi}{2}   -  \theta)  =  \sin( \theta)  \\  =  \cos( \frac{\pi}{2} ) . \cos( \theta)  +  \sin( \frac{\pi}{2} ) . \sin( \theta)  \\ ....{ cos(a  - b) =  \cos(a). \cos(b)  +  \sin(a) . \sin(b)  } \\  = 0. \cos( \theta)  + 1. \sin( \theta) \\  ...{ \cos( \frac{\pi}{2}  )  = 0} \:  and \:  \sin( \frac{\pi}{2} ) = 1 \\  = 0 +  \sin( \theta)  \\  =  \sin( \theta)

Similar questions