Math, asked by srivastavashubh034, 18 days ago

prove that
cos tan =  \sin
plz help​

Answers

Answered by saichavan
27

Correct question -

 \sf \:  \cos( \theta)  \tan(  \theta )  =   \sin( \theta)

Consider LHS,

 \sf \implies \cos( \theta)  \cdot \:  \tan( \theta)

\sf \: Use \:  Indentity : \tan(θ) =\dfrac{\sin(θ)}{\cos(θ)}

 \sf \implies \:  \cos( \theta)  \times  \dfrac{ \sin( \theta) }{  \cos( \theta) }

 \sf \: Reduce \:  \cos (θ)

 \sf \implies \:   \cancel{\cos( \theta) } \times  \dfrac{ \sin( \theta) } {  \cancel{\cos( \theta)}}

 \sf \implies \:   \sin( \theta)

Therefore ,LHS = RHS.

Hence , proved.

Similar questions