Math, asked by RishabhBansal, 1 year ago

Prove That

 \cot(x)  \cot(2x)  -  \cot(2x)  \cot(3x) -  \cot(3x)   \cot(x)  = 1

Class 11

Trigonometric Functions

Answers

Answered by DevilDoll12
9
HEYA!!
---------

Cot X •Cot 2X - Cot 2X• Cot 3X - Cot 3X •Cot X = 1

Taking Cot 3X common ,
--------------------------------

Cot X • Cot 2X - Cot 3X ( Cot 2X + Cot X )

Cot X • Cot 2X - Cot ( 2X + X ) ( Cot 2X + Cot X )



[ Using the identity Cot ( X + Y ) = Cot X Cot Y - 1 / Cot X + Cot Y ]

Cot X •Cot 2X - [ Cot 2X Cot X - 1 / Cot X + Cot 2X ] ( Cot 2X + Cot X )

= Cot X • Cot 2X - ( Cot 2X • Cot X - 1 )

= Cot X • Cot 2X - Cot 2X • Cot X + 1

= 1 = LHS.

----------------------------------------------------------------------------------------------------


RishabhBansal: thanks
DevilDoll12: welcome ☺
Similar questions