Math, asked by BrainlyRV, 9 months ago

Prove that

cotx \: cot2x - cot2x \: cot3x -  \: cot3x \: cotx \:  = 1

Answers

Answered by zainabbano
2

Answer:

taking L.H.S

cot x cot 2x -cot 2x cot 3x -cot 3x cotx

=cot x cot 2x-cot 3x (cot 2x + cot x)

=cot x cot 2x-cot (2x+x) (cot 2x + cot x

Answered by Unni007
79

LHS = (cotx.cot2x) - (cot2x.cot3x) - (cot3x.cotx )

We know,

2x + x = 3x

taking cot on both sides,

cot(x + 2x) = cot3x

We know,

\huge\boxed{\sf cot(A + B) = \dfrac{(cotA.cotB-1)}{(cotA+CotB)}}

Applying the values to the equation,

\implies \sf cot(3x) = \dfrac{(cotx.cot2x-1)}{(cotx+Cot2x)}

\implies\sf cotx.cot2x -1 = cot3x(cotx+cot2x)

\implies\sf cotx.cot2x -1 = cot3x.cotx + cot3x.cot2x

\bold{\implies\sf cotxcot2x - cot2x.cot3x - cot3x.cotx = 1}

\huge\boxed{\bold{\rm Hence\:proved}}

Similar questions