prove that
![\csc( \alpha ) - \sin( \alpha ) = {a}^{3} and \sec( \alpha ) - \cos( \alpha ) = {b}^{3} then \: prove \: that \: {a}^{2} \times {b}^{2} \times ( {a}^{2} + {b}^{2} ) = 1 \csc( \alpha ) - \sin( \alpha ) = {a}^{3} and \sec( \alpha ) - \cos( \alpha ) = {b}^{3} then \: prove \: that \: {a}^{2} \times {b}^{2} \times ( {a}^{2} + {b}^{2} ) = 1](https://tex.z-dn.net/?f=+%5Ccsc%28+%5Calpha++%29++-++%5Csin%28+%5Calpha+%29++%3D+++%7Ba%7D%5E%7B3%7D+and+%5Csec%28+%5Calpha+%29++-++%5Ccos%28+%5Calpha+%29++%3D++%7Bb%7D%5E%7B3%7D+then+%5C%3A+prove+%5C%3A+that+%5C%3A++%7Ba%7D%5E%7B2%7D++%5Ctimes++%7Bb%7D%5E%7B2%7D++%5Ctimes+%28+%7Ba%7D%5E%7B2%7D++%2B++%7Bb%7D%5E%7B2%7D+%29+%3D+1)
Answers
Answered by
0
very very hard question
nobita0000:
then what do you think I will give you the question 1+1=2
Similar questions