Math, asked by mouchumibaruah1, 6 days ago

Prove that :
{( \csc\theta -  \cot\theta)}^{2} = \frac{1 -  \cos\theta}{1 +  \cos\theta}


Answers

Answered by sehgalp381
9

Answer:

hello

Step-by-step explanation:

( \csc(a)  -  \cot(a) ) {}^{2}  =  \frac{1 -  \cos( \alpha ) }{1 +  \cos( \alpha ) }  \\  =  ( \frac{1}{ \sin( \alpha )  }  -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } ) {}^{2}  \\  = ( \frac{1 -  \cos( \alpha ) }{ \sin( \alpha ) } ) {}^{2}  \\  =  \frac{(1 -  \cos( \alpha )) }{ \sin {}^{2} ( \alpha ) }  \\  =  \frac{(1 -  \cos( \alpha) ) (1 -  \cos( \alpha ) )}{(1 +  \cos( \alpha ) )(1 -  \cos( \alpha )) }  \\  =  \frac{1 -  \cos( \alpha ) }{1 +  \cos( \alpha ) }

marks the brainlist❤☺

Answered by MrImpeccable
5

ANSWER:

To Prove:

\:\:\:\bullet\:\:\:(\csc\theta-\cot\theta)^2=\dfrac{1-\cos\theta}{1+\cos\theta}

Proof:

We need to that,

\implies(\csc\theta-\cot\theta)^2=\dfrac{1-\cos\theta}{1+\cos\theta}

Solving LHS,

\implies(\csc\theta-\cot\theta)^2

We know that,

\hookrightarrow\csc\theta=\dfrac{1}{\sin\theta}

And,

\hookrightarrow\cot\theta=\dfrac{\cos\theta}{\sin\theta}

So,

\implies(\csc\theta-\cot\theta)^2

Hence,

\implies\left(\dfrac{1}{\sin\theta}-\dfrac{\cos\theta}{\sin\theta}\right)^2

On simplifying,

\implies\left(\dfrac{1-\cos\theta}{\sin\theta}\right)^2

We can write the above mentioned expression as,

\implies\dfrac{(1-\cos\theta)^2}{(\sin\theta)^2}

\implies\dfrac{(1-\cos\theta)(1-\cos\theta)}{\sin^2\theta}

We know that,

\hookrightarrow\sin^2\theta=1-\cos^2\theta

So,

\implies\dfrac{(1-\cos\theta)(1-\cos\theta)}{(1-\cos^2\theta)}

\implies\dfrac{(1-\cos\theta)(1-\cos\theta)}{(1^2-\cos^2\theta)}

We know that,

\hookrightarrow a^2-b^2=(a+b)(a-b)

So,

\implies\dfrac{(1-\cos\theta)(1-\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}

On simplifying,

\implies\bf\dfrac{1-cos\theta}{1+cos\theta}=RHS

HENCE PROVED!!!

Similar questions