Math, asked by αηυяαg, 8 months ago

prove that \dfrac{sinθ-cosθ+1}{sinθ+cosθ-1} = \dfrac{1}{secθ - tanθ}

Answers

Answered by robin3512
6

Hope it will helpful for you

follow me

Attachments:
Answered by ItzDvilJatin2
31

\huge\underline\bold\blue{solution:-}

\dfrac{sinθ - cosθ + 1}{sinθ + cosθ - 1}

\dfrac{tanθ + 1 - secθ}{tanθ + 1 - secθ}

\dfrac{(tanθ + secθ) - 1}{(tanθ - secθ) + 1}

\dfrac{{(tanθ + secθ) - 1} (tanθ - secθ)}{{(tanθ - secθ) + 1} ( tanθ - secθ)}

\dfrac{(tan²θ - sec²θ) - (tanθ - secθ}{{(tanθ - secθ) + 1} ( tanθ - secθ)}

\dfrac{-1 - tanθ + secθ}{{(tanθ - secθ) + 1} ( tanθ - secθ)}

\dfrac{-1}{tanθ - secθ}

\dfrac{1}{secθ - tanθ}

Hence

\underline\bold\purple{L.H.S} =\underline\bold\purple{R.H.S}

Hope it helps

Similar questions