Math, asked by Anonymous, 5 months ago

prove that  \\\dfrac{\sin\theta}{\cos\theta}=\dfrac{\sec\theta}{\csc\theta}

Answers

Answered by karthikeyan12083
1

Answer:

lhs \:  =  \frac{ \sin(  \theta) }{cos \theta} \:  \\  \ sin{ \theta} \:  =  \:  \frac{opp}{hyp}  \\  \cos{ \theta} =  \frac{adj}{hyp} \:  \:   \\  \frac{ \sin( \theta) }{ \cos( \theta) }  =  \frac{opp}{hyp}  \times  \frac{hyp}{adj }  =  \frac{opp}{adj}  \\  \:  \:  \:  \:  \:  \:  =   \tan( \theta)  \\ rhs \:  =   \frac{ \sec( \theta) }{ \csc( \theta) } =  \frac{ \frac{hyp}{adj} }{ \frac{hyp}{opp} }   \\   =  \frac{hyp}{adj}  \times  \frac{opp}{hyp}  =  \frac{opp}{adj}  =  \tan( \theta)

hence proved......

Answered by Anonymous
0

Step-by-step explanation:

this is proved that left hand side= right hand side

Attachments:
Similar questions