Math, asked by Anonymous, 10 hours ago

Prove that \dfrac12 \int\limits_0^1 \log(\sin \pi x) dx = \dfrac{1}{2\pi} \int\limits_0^\pi \log(\sin x) dx

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Consider, the integral

\rm :\longmapsto\:\dfrac12   \: \displaystyle\int\limits_0^1 \log(\sin \pi x) dx

To evaluate this integral, we use Method of Substitution

So, Substitute

 \purple{\rm :\longmapsto\:\pi \: x \:  =  \: y}

 \purple{\rm :\longmapsto\:\pi \: dx \:  =  \: dy}

 \purple{\rm :\longmapsto\: dx \:  =  \:  \dfrac{dy}{\pi} }

Now, We know, In definite integrals, when we substitute, we have to change the limits too. So,

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf \pi \end{array}} \\ \end{gathered}}

So, on substituting these, we get

\rm \:  =  \: \:\dfrac{1}{2\pi}    \: \displaystyle\int\limits_0^\pi \log(\sin  y) dy

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_a^bf(x)dx =  \displaystyle\int\limits_a^bf(y)dy}}}

So, using this, we get

\rm \:  =  \: \:\dfrac{1}{2\pi}    \: \displaystyle\int\limits_0^\pi \log(\sin  x) dx

Hence,

\boxed{\tt{ \rm \:\dfrac12  \displaystyle\int\limits_0^1 \log(\sin \pi x) dx  =  \: \:\dfrac{1}{2\pi}    \: \displaystyle\int\limits_0^\pi \log(\sin  x) dx}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_a^bf(x)dx =  \displaystyle\int\limits_a^bf(a + b - x)dx}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_0^af(x)dx =  \displaystyle\int\limits_0^af(a - x)dx}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_{ - a}^af(x)dx = 2 \displaystyle\int\limits_0^af(x)dx \: if \: f( - x) = f(x)}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_{ - a}^af(x)dx = 0 \: if \: f( - x) =  - f(x)}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_0^{2a}f(x)dx = 2 \displaystyle\int\limits_0^af(x)dx \: if \: f(2a - x) = f(x)}}}

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int\limits_0^{2a}f(x)dx = 0 \: if \: f(2a - x) = -  f(x)}}}

Similar questions