Math, asked by Alifibrahim, 6 months ago

Prove that
f(x) =   log_{2}(3x + 2)
is one to one function​

Answers

Answered by shadowsabers03
4

A function f:A\to B is said to be a one - one function if and only if distinct elements of A have distinct images in B, i.e., a_1\neq a_2\quad\!\iff\quad\!f(a_1)\neq f(a_2)\quad\forall a_1,\ a_2\in A

Given,

\longrightarrow f(x)=\log_2(3x+2)

We need to check if it's a one - one function.

Assume,

\longrightarrow f(x_1)\neq f(x_2)

\longrightarrow\log_2(3x_1+2)\neq\log_2(3x_2+2)

Taking antilog,

\longrightarrow3x_1+2\neq3x_2+2

\longrightarrow3x_1\neq3x_2

\longrightarrow x_1\neq x_2

That is,

\longrightarrow f(x_1)\neq f(x_2)\quad\!\implies\quad\!x_1\neq x_2

On doing the reverse we can prove,

\longrightarrow x_1\neq x_2\quad\!\implies\quad\!f(x_1)\neq f(x_2)

Finally we get,

\longrightarrow x_1\neq x_2\quad\!\iff\quad\!f(x_1)\neq f(x_2)

Hence f is a one - one function. Thus proved.

Similar questions