Math, asked by seabird1234, 2 months ago

Prove that:
 \frac{1}{1 + \cosθ  } +  \frac{1}{1 -  \cosθ }   = 2  \cosec ²θ

Answers

Answered by anshsinha292
4

Answer:

We have,

LHS =

1+cosθ

sinθ

+

sinθ

1+cosθ

⇒ LHS =

sinθ(1+cosθ)

sin

2

θ+(1+cosθ)

2

⇒ LHS =

sinθ(1+cosθ)

sin

2

θ+1+2cosθ+cos

2

θ

⇒ LHS =

sinθ(1+cosθ)

(sin

2

θ+cos

2

θ)+1+2cosθ

[∵sin

2

θ+cos

2

θ=1]

⇒ LHS =

sinθ(1+cosθ)

2+2cosθ

=

sinθ(1+cosθ)

2(1+cosθ)

=

sinθ

2

=2cosecθ=RHS

Similar questions