Math, asked by ayUshiknow, 2 months ago

Prove that

 \frac{1}{1 +  \sqrt{2} }  +  \frac{1}{ \sqrt{2} +  \sqrt{3}  }   +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \frac{1}{ \sqrt{4} +  \sqrt{5}  }  +  \frac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \frac{1}{ \sqrt{6} +  \sqrt{7}  }  +  \frac{1}{ \sqrt{7} +  \sqrt{8}  }  +  \frac{1}{ \sqrt{8}  +  \sqrt{9} }
prove that this is equal to 2..

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\frac{1}{1 + \sqrt{2} } + \frac{1}{ \sqrt{2} + \sqrt{3} } + \frac{1}{ \sqrt{3} + \sqrt{4} } + \frac{1}{ \sqrt{4} + \sqrt{5} } + \frac{1}{ \sqrt{5} + \sqrt{6} } +  \\ \frac{1}{ \sqrt{6} + \sqrt{7} } + \frac{1}{ \sqrt{7} + \sqrt{8} } + \frac{1}{ \sqrt{8} + \sqrt{9} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Consider,

\rm :\longmapsto\:\dfrac{1}{1 +  \sqrt{2} }

can be rewritten as

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{2}  + 1}

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{2}  + 1}  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}

We know,

 \red{\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

we get now,

\rm  \:  = \:\dfrac{ \sqrt{2}  - 1}{ {( \sqrt{2} )}^{2}  -  {1}^{2} }

\rm \:  =  \:  \: \sqrt{2}  - 1

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{2} +  \sqrt{3}  }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{3}  +  \sqrt{2} }

On Rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{3}  +  \sqrt{2} }  \times \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}

\rm \:  =  \:  \: \sqrt{3}  -  \sqrt{2}

Now, Consider,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3} +  \sqrt{4}  }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{4}  +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{4}  +  \sqrt{3} }  \times \dfrac{ \sqrt{4} -  \sqrt{3}  }{ \sqrt{4}  -  \sqrt{3} }

\rm \:  =  \:  \:\dfrac{ \sqrt{4}  -  \sqrt{3} }{4 - 3}

\rm \:  =  \:  \: \sqrt{4} -  \sqrt{3}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{4}  +  \sqrt{5} }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{5}  +  \sqrt{4} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{5}  +  \sqrt{4} } \times \dfrac{ \sqrt{5}  -  \sqrt{4} }{ \sqrt{5}  -  \sqrt{4} }

\rm \:  =  \:  \:\dfrac{ \sqrt{5} -  \sqrt{4}  }{5 - 4}

\rm \:  =  \:  \: \sqrt{5} -  \sqrt{4}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  +  \sqrt{6} }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{6}  +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{6}  +  \sqrt{5} }  \times \dfrac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6}  -  \sqrt{5} }

\rm \:  =  \:  \:\dfrac{ \sqrt{6}  -  \sqrt{5} }{6 - 5}

\rm \:  =  \:  \: \sqrt{6} -  \sqrt{5}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{6}  +  \sqrt{7} }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{7}  +  \sqrt{6} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{7}  +  \sqrt{6} } \times \dfrac{ \sqrt{7} -  \sqrt{6}  }{ \sqrt{7}  -  \sqrt{6} }

\rm \:  =  \:  \:\dfrac{ \sqrt{7}  -  \sqrt{6} }{7 - 6}

\rm \:  =  \:  \: \sqrt{7} -  \sqrt{6}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{7}  +  \sqrt{8} }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{8}  +  \sqrt{7} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{8}  +  \sqrt{7} }  \times \dfrac{ \sqrt{8}  -  \sqrt{7} }{ \sqrt{8}  -  \sqrt{7} }

\rm \:  =  \:  \:\dfrac{ \sqrt{8}  -  \sqrt{7} }{8 - 7}

\rm \:  =  \:  \: \sqrt{8} -  \sqrt{7}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{8}  +  \sqrt{9} }

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{9}  +  \sqrt{8} }

On rationalizing the denominator, we get

\rm \:  =  \:  \:\dfrac{1}{ \sqrt{9}  +  \sqrt{8} }  \times \dfrac{ \sqrt{9}  -  \sqrt{8} }{ \sqrt{9}  -  \sqrt{8} }

\rm \:  =  \:  \:\dfrac{ \sqrt{9} -  \sqrt{8}  }{9 - 8}

\rm \:  =  \:  \: \sqrt{9}  -  \sqrt{8}

Now, Let consider the given expression,

\rm :\longmapsto\:\frac{1}{1 + \sqrt{2} } + \frac{1}{ \sqrt{2} + \sqrt{3} } + \frac{1}{ \sqrt{3} + \sqrt{4} } + \frac{1}{ \sqrt{4} + \sqrt{5} } + \frac{1}{ \sqrt{5} + \sqrt{6} } +  \\ \frac{1}{ \sqrt{6} + \sqrt{7} } + \frac{1}{ \sqrt{7} + \sqrt{8} } + \frac{1}{ \sqrt{8} + \sqrt{9} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

On substituting the values, evaluated above

\rm  \:  =   \cancel {\sqrt{2}} - 1 +  \cancel {\sqrt{3} }-  \cancel {\sqrt{2} }+  \cancel {\sqrt{4}} -  \cancel {\sqrt{3}}  +  \cancel {\sqrt{5}} -  \cancel {\sqrt{4}} +  \\  \cancel {\sqrt{6}} -  \cancel {\sqrt{5}} +  \cancel {\sqrt{7}} -  \cancel {\sqrt{6}} +  \cancel {\sqrt{8}} -  \cancel {\sqrt{7}} +  \sqrt{9} -  \cancel {\sqrt{8} }

\rm \:  =  \:  \: \sqrt{9} - 1

\rm \:  =  \:  \:3 - 1

\rm \:  =  \:  \:2

Similar questions