prove that
Answers
Correct Question :-
Prove That :-
→ (1/3) [ cos³A*sin3A + sin³A*cos3A ] = (1/4)*sin4A
Formula used :-
- cos³A = (cos3A + 3cosA)/4
- sin³A = (3sinA - sin3A)/4
- sinA*cosB + cosA*sinB = sin(A+B)
Solution :-
Taking LHS, we get,
→ (1/3) [ cos³A*sin3A + sin³A*cos3A ]
Putting Both Formula of cos³A & sin³A we get,
→ (1/3)[[{(cos3A + 3cosA)/4} * sin3A] + [{(3SinA - Sin3A)/4} * cos3A ]]
→ (1/3*4) [(cos3A + 3cosA)*sin3A + (3SinA - Sin3A)*cos3A]
→ (1/3*4) [ (cos3A*sin3A + 3cosA*sin3A) + (3sinA*cos3A - sin3A*cos3A) ]
→ (1/3*4) [ cos3A*sin3A - sin3A*cos3A + 3(cosA*sin3A + sinA*cos3A) ]
→ (1/3*4) [ 3(cosA*sin3A + sinA*cos3A) ]
→ (1/4)[ (cosA*sin3A + sinA*cos3A) ]
using sinA*cosB + cosA*sinB = sin(A+B) now, we get,
→ (1/4)[ sin(A + 3A) ]
→ 1(/4) * sin4A . = RHS = Hence , Proved.
_______________________
→ (1/3) [ cos³A*sin3A + sin³A*cos3A ] = (1/4)*sin4A
_______________________
- cos³A = (cos3A + 3cosA)/4
- sin³A = (3sinA - sin3A)/4
- sinA*cosB + cosA*sinB = sin(A+B)
_______________________
↪ (1/3) [ cos³A×sin3A + sin³A×cos3A ]
↪ (1/3)[[{(cos3A + 3cosA)/4} ×sin3A] + [{(3SinA - Sin3A)/4} ×cos3A ]]
↪ (1/3×4) [(cos3A + 3cosA)×sin3A + (3SinA - Sin3A)×cos3A]
↪ (1/3×4) [ (cos3A×in3A + 3cosA×sin3A) + (3sinA×cos3A - sin3A×cos3A) ]
↪(1/3×4) [ cos3A×sin3A - sin3A×cos3A + 3(cosA×sin3A + sinA×cos3A) ]
↪ (1/3×4) [ 3(cosA×sin3A + sinA×cos3A) ]
↪ (1/4)[ (cosA×sin3A + sinA×cos3A) ]
↪ (1/4)[ sin(A + 3A) ]
↪ 1(/4) × sin4A