Math, asked by SimeonSyles, 1 month ago

Prove that
 \frac{1}{3 +  \sqrt{7} }  +  \frac{1}{ \sqrt{7 +  \sqrt{5} } }  +  \frac{1}{ \sqrt{5 +  \sqrt{3} } }  +  \frac{1}{ \sqrt{3  + 1} }  = 1

Answers

Answered by Anonymous
58

 \huge{GIVEN} =

\frac{1}{3 + \sqrt{7} } + \frac{1}{ \sqrt{7 + \sqrt{5} } } + \frac{1}{ \sqrt{5 + \sqrt{3} } } + \frac{1}{ \sqrt{3 + 1} } = 1</p><p>

____________________

 \frac{3 -  \sqrt{7} }{2} +  \frac{1}{ \sqrt{7 +  \sqrt{5} } }   +  \frac{ \sqrt{5 -  \sqrt{3} } }{2}  +  \frac{1}{ \sqrt{4} }

____________________

 \frac{3 -  \sqrt{7}  }{2} +  \frac{1}{ \sqrt{7 +  \sqrt{5} } } +  \frac{ \sqrt{5 -  \sqrt{3} } }{2} +  \frac{1}{2}

____________________

 \frac{3 -  \sqrt{7 +  \sqrt{5 -  \sqrt{3 + 1} } } }{2}  +  \frac{ \sqrt{7 +  \sqrt{5} } }{7 +  \sqrt{5} }

____________________

 \frac{4 -  \sqrt{7 +  \sqrt{5 -  \sqrt{3} } } }{2}  +  \frac{ \sqrt{7 +  \sqrt{5(7 -  \sqrt{5)} } } }{44}

____________________

 \frac{4 -  \sqrt{7 +  \sqrt{5 -  \sqrt{3} } } }{2} +  \frac{7 \sqrt{7 +  \sqrt{5 -  \sqrt{(7 + \sqrt{5) \times 5}  } } } }{44}

____________________

SOLUTION :-

 \frac{4 -  \sqrt{7 +  \sqrt{5 -  \sqrt{3} } } }{2}  +  \frac{ 7 \sqrt{7 +  \sqrt{5 -  \sqrt{35 + 5 \sqrt{5} } } }  }{44}

____________________

HENCE YOUR ANSWER IN DECIMAL :-

 \huge1.25818

____________________

--------SOLVED-------

Similar questions