Math, asked by IamOnePunchMan, 7 hours ago

Prove that:
 \frac{1}{3 - \sqrt{8} } - \frac{1}{ \sqrt{8 } - \sqrt{7} } + \frac{1}{ \sqrt{7} - \sqrt{6} } - \frac{1}{ \sqrt{6} - \sqrt{5} } + \frac{1}{ \sqrt{5} - 2} =5
Give step by step explaination.​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Consider

\rm \: \dfrac{1}{3 -  \sqrt{8} }

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{3 -  \sqrt{8} }  \times \dfrac{3 +  \sqrt{8} }{3 +  \sqrt{8} }

We know,

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{ {3}^{2} -  {( \sqrt{8}) }^{2} }

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{9 - 8}

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{1}

\rm \:  =  \:3 +  \sqrt{8}

Now, Consider

\rm \: \dfrac{1}{ \sqrt{8}  -  \sqrt{7} }

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{8}  -  \sqrt{7} }  \times \dfrac{ \sqrt{8}  +  \sqrt{7} }{ \sqrt{8}  +  \sqrt{7} }

\rm \:  =  \: \dfrac{ \sqrt{8} +  \sqrt{7}  }{ {( \sqrt{8} )}^{2} -  {( \sqrt{7} )}^{2}  }

\rm \:  =  \: \dfrac{ \sqrt{8} +  \sqrt{7} }{8 - 7}

\rm \:  =  \: \dfrac{ \sqrt{8} +  \sqrt{7} }{1}

\rm \:  =  \:  \sqrt{8} +  \sqrt{7}

Now, Consider

\rm \: \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }  \times \dfrac{ \sqrt{7}  +  \sqrt{6} }{ \sqrt{7}  +  \sqrt{6} }

\rm \:  =  \: \dfrac{ \sqrt{7} +  \sqrt{6}  }{ {( \sqrt{7} )}^{2} -  {( \sqrt{6} )}^{2}  }

\rm \:  =  \: \dfrac{ \sqrt{7} +  \sqrt{6} }{7 - 6}

\rm \:  =  \: \dfrac{ \sqrt{7} +  \sqrt{6} }{1}

\rm \:  =  \:  \sqrt{7} +  \sqrt{6}

Now, Consider

\rm \: \dfrac{1}{ \sqrt{6}  -  \sqrt{5} }

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{6}  -  \sqrt{5} }  \times \dfrac{ \sqrt{6}  +  \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }

\rm \:  =  \: \dfrac{ \sqrt{6} +  \sqrt{5}  }{ {( \sqrt{6} )}^{2} -  {( \sqrt{5} )}^{2}  }

\rm \:  =  \: \dfrac{ \sqrt{6} +  \sqrt{5} }{6 - 5}

\rm \:  =  \: \dfrac{ \sqrt{6} +  \sqrt{5} }{1}

\rm \:  =  \:  \sqrt{6} +  \sqrt{5}

Now, Consider

\rm \: \dfrac{1}{ \sqrt{5}  -  2}

So, on rationalizing the denominator, we get

\rm \: =  \:  \dfrac{1}{ \sqrt{5}  -  2} \times \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2}

\rm \: =  \:  \dfrac{ \sqrt{5} + 2 }{ (\sqrt{5})^{2}   -   {2}^{2} }

\rm \: =  \:  \dfrac{ \sqrt{5} + 2 }{ 5 - 4 }

\rm \: =  \:  \dfrac{ \sqrt{5} + 2 }{ 1 }

\rm \:  =  \:  \sqrt{5} + 2

Now, Consider the given expression, we have

\rm \: \dfrac{1}{3 - \sqrt{8} } - \dfrac{1}{ \sqrt{8 } - \sqrt{7} } + \dfrac{1}{ \sqrt{7} - \sqrt{6} } - \dfrac{1}{ \sqrt{6} - \sqrt{5} } + \dfrac{1}{ \sqrt{5} - 2}

\rm \:  =  \: (3 +  \sqrt{8}) - ( \sqrt{8} +  \sqrt{7})+( \sqrt{7} +  \sqrt{6}) - ( \sqrt{6} +  \sqrt{5}) + ( \sqrt{5} + 2)

\rm \:  =  \:3+   \cancel{\sqrt{8}}-  \cancel{\sqrt{8}} -   \cancel{\sqrt{7}}  +  \cancel{\sqrt{7}} +  \cancel{\sqrt{6}} -   \cancel{\sqrt{6}}  -  \cancel{\sqrt{5}} +  \sqrt{5} + 2

\rm \:  =  \: 3 + 2

\rm \:  =  \: 5

Hence,

\boxed{\tt{ \frac{1}{3 - \sqrt{8} } - \frac{1}{ \sqrt{8 } - \sqrt{7} } + \frac{1}{ \sqrt{7} - \sqrt{6} } - \frac{1}{ \sqrt{6} - \sqrt{5} } + \frac{1}{ \sqrt{5} - 2} = 5 \: }}

Answered by XxitzZBrainlyStarxX
8

Question:-

Prove that:

 \sf \large\frac{1}{3 - \sqrt{8} } - \frac{1}{ \sqrt{8 } - \sqrt{7} } + \frac{1}{ \sqrt{7} - \sqrt{6} } - \frac{1}{ \sqrt{6} - \sqrt{5} } + \frac{1}{ \sqrt{5} - 2} =5.

Solution:-

L.HS.

 \sf \large \frac{1}{3 -  \sqrt{8} }  -  \frac{1}{ \sqrt{8}  -  \sqrt{7} }  +  \frac{1}{ \sqrt{7} + 6 }  -  \frac{1}{ \sqrt{6} -  \sqrt{5}  }  +  \frac{1}{ \sqrt{5}  - 2}

 \sf \large =  \frac{3 +  \sqrt{8} }{(3 -  \sqrt{8})(3 +  \sqrt{8}  )}  -  \frac{ \sqrt{8}  +  \sqrt{7} }{( \sqrt{8} -  \sqrt{7}  )( \sqrt{8} +  \sqrt{7})  }  +  \frac{ \sqrt{7}  +  \sqrt{6} }{( \sqrt{7} -  \sqrt{6} ) (\sqrt{7}  +  \sqrt{6}  )}  -  \frac{ \sqrt{6} +  \sqrt{5}  }{( \sqrt{6}  -  \sqrt{5} )( \sqrt{6} +  \sqrt{5} ) }  +  \frac{ \sqrt{5}  + 2}{( \sqrt{5} - 2)( \sqrt{5}   + 2)}

 \sf \large =  \frac{3 +  \sqrt{8} }{1} -  \frac{ \sqrt{8} +  \sqrt{7}  }{1}   +  \frac{ \sqrt{7} +  \sqrt{6}  }{1}  -  \frac{ \sqrt{6} +  \sqrt{5}  }{1}  +  \frac{ \sqrt{5}  + 2}{1}

 \sf \large = 3 {{ \cancel{+ \sqrt{8}}}} {{ \cancel{ -  \sqrt{8} }}}{{ \cancel{ -  \sqrt{7}}}}{{ \cancel{  +  \sqrt{7} }}}{{ \cancel{ +  \sqrt{6} }}}{{ \cancel{ -  \sqrt{6} }}}{{ \cancel{ -  \sqrt{5} }}}{{ \cancel{ + \sqrt{5} }}} + 2

 \sf \large = 3 + 2

 \sf \large = 5.

Answer:-

 { \boxed{  \sf \large \red{\frac{1}{3 - \sqrt{8} } - \frac{1}{ \sqrt{8 } - \sqrt{7} } + \frac{1}{ \sqrt{7} - \sqrt{6} } - \frac{1}{ \sqrt{6} - \sqrt{5} } + \frac{1}{ \sqrt{5} - 2}=5}}}

{ \boxed{ \sf \large \blue{Hence, Proved \:    L.HS. = R.HS.}}}

Hope you have satisfied.

Similar questions