Math, asked by Jayesh9960485, 1 year ago

Prove that :

 \frac{1}{ \sec( \alpha )  -   \tan( \alpha  ) }  =  \sec( \alpha )   +  \tan( \alpha )

Answers

Answered by Cynefin
0
We know, that sec^2 theta -tan^2 theta=1
From the Identity of a^2-b^2=(a+b)(a-b)
(sec theta + tan theta) (sec theta -tan theta)=1
sec theta +tan theta =1/sec theta - tan thets

Jayesh9960485: Write specifically man !
Answered by Anonymous
6
Hey!

Here is your answer!

to \: prove \\  \\  \frac{1}{sec \alpha  - tan \alpha }  = sec \alpha  + tan  \alpha  \\  \\ proof \\  \\ lhs \\  \\  =  \frac{1}{sec \alpha  - tan \alpha }  \\  \\  =  \frac{1}{ \frac{1}{cos \alpha }  -  \frac{sin \alpha }{  cos \alpha  } } \\  \\  =  \frac{1}{ \frac{1 - sin \alpha }{cos \alpha } }   \\  \\  =  \frac{cos \alpha }{1 - sin \alpha } \\  \\ rationalising \: the \: denominator \\  \\   = \frac{cos \alpha (1  +  sin \alpha )}{(1 - sin \alpha )(1 + sin \alpha )}   \\  \\  =  \frac{cos \alpha (1 + sin \alpha )}{1 -  {sin}^{2} \alpha  }  \\  \\ using \: 1 -  {sin}^{2} \alpha  =  {cos}^{2}   \alpha  \\  \\  =  \frac{cos \alpha (1 + sin \alpha )}{  {cos}^{2} \alpha   }  \\  \\  =  \frac{1 + sin \alpha }{cos \alpha }  \\  \\  =  \frac{1}{cos \alpha }  +  \frac{sin \alpha }{cos \alpha }  \\  \\  = sec \alpha   + tan \alpha  \\  \\  = rhs \\  \\ hence \: proved

Hope it's satisfactory!

Jayesh9960485: Nice!
Anonymous: thanks ^_^
Jayesh9960485: Can you solve my next question?
Jayesh9960485: Prove this : ↑ It's necessary for me and you too !
https://brainly.in/question/4326973?utm_source=android&utm_medium=share&utm_campaign=question
Similar questions