Prove that
Answers
Answered by
8
Step-by-step explanation:
Given: [(1 + sinθ - cosθ)/(1 + sinθ + cosθ)]²
∴ (a + b - c)² = a² + b² + c² + 2ab - 2bc - 2ca
∴ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
= [(1 + sin²θ + cos²θ + 2sinθ - 2cosθ - sinθcosθ)/(1 + sin²θ + cos²θ + 2sinθ + 2cosθ + sinθcosθ]
= [(1 + 1 + 2sinθ - 2cosθ - sinθcosθ)/(1 + 1 + 2sinθ + 2cosθ + sinθcosθ)
= [(2 + 2sinθ - 2cosθ - 2sinθcosθ)/(2 + 2sinθ + 2cosθ + sinθcosθ)]
= [2(1 + sinθ) - 2cosθ(1 + sinθ)]/[2(1 + sinθ) + 2cosθ(1 + sinθ)]
= [1 + sinθ(2 - 2cosθ)]/[1 + sinθ(2 + 2cosθ)]
= [(2 - 2cosθ)/(2 + 2cosθ)]
= [2(1 - cosθ)/2(1 + cosθ)]
= (1 - cosθ)/(1 + cosθ).
*************************** Happy Republic Day **************************
Answered by
0
Answer:
mark as a brainlist answer
Attachments:
Similar questions