Math, asked by sweta56721, 3 months ago

Prove that \:\frac{1 + sinA - cosA}{1 + sinA + cosA}  \:=  \: \: \sqrt{\frac{ 1 - cosA}{1 + cosA}}

Answers

Answered by Anonymous
315

\: \: \: \: \:{\large{\pmb{\sf{\underline{ Here's \:  your \:  required \: solution!! }}}}}\\\\

Here we are asked to prove :-

  • \sf \green {\:\dfrac{1 + sinA - cosA}{1 + sinA + cosA}} \sf \green{\:  \: =  \:  \: \sqrt{\dfrac{ 1 - cosA}{1 + cosA}}}

⠀⠀⠀ ______________________

\sf\purple {:\implies \:\dfrac{1 + sinA - cosA}{1 + sinA + cosA}}\\ \\

\sf :\implies \:  \:   \:  \:\dfrac{\dfrac{1}{sinA}  + \dfrac{sinA}{sinA}  - \dfrac{cosA}{sinA} }{\dfrac{1}{sinA}  + \dfrac{sinA}{sinA}  + \dfrac{cosA}{sinA} }\\\\

\sf:\implies \:  \:   \:  \:\dfrac{cosecA + 1 - cotA}{cosecA +1 +  cotA}\\\\

\sf:\implies\:  \:   \:  \:\dfrac{cosecA  - cotA  + ( {cosec}^{2}A -  {cot}^{2}A)}{cosecA + cotA + 1} \\\\

\sf:\implies\:  \:   \:  \:\dfrac{(cosecA  - cotA) + (cosecA + cotA)({cosec}A -  {cot}A)}{cosecA + cotA + 1} \\\\

\sf:\implies \:  \:   \:  \:\dfrac{(cosecA  - cotA)(cosecA + cotA + 1)}{cosecA + cotA + 1}\\\\

\sf:\implies \:  \:   \:  \: \sqrt{ {\bigg(\dfrac{1}{sinA}  - \dfrac{cosA}{sinA}  \bigg) }^{2} } \\\\

\sf:\implies \:  \:  \:  \: \sqrt{ {\bigg(\dfrac{1 - cosA}{sinA}\bigg) }^{2} } \\\\

\sf:\implies \:  \:   \:  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{ {sin}^{2}A } } \\\\

\sf:\implies \:  \:   \:  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{1 -  {cos}^{2}A } } \\\\

\sf:\implies\:  \:   \:  \: \sqrt{\dfrac{ {(1 - cosA)}^{2} }{(1 -  {cos}A)(1 + cosA) }}\\\\

\sf \purple {:\implies\:  \:  \:  \: \sqrt{\dfrac{ 1 - cosA}{1 + cosA}}}\\\\

\qquad\quad\therefore{\underline{\sf{\pmb{\green{Hence,Proved..!!}}}}}

Similar questions