Math, asked by Anonymous, 4 months ago

Prove that :

 \frac{1 +  { \tan}^{2} }{1 +  \ \ { \cot }^{2}  }  =  { \frac{1 -  \tan \: }{1 -  \cot } }^{2}  =  { \tan }^{2}

Answers

Answered by Anonymous
6

CORECT QUESTION :-

 \\  \sf\:  \dfrac{1 +  {tan}^{2} \theta }{1 +  {cot}^{2} \theta }  =    { \left(  \dfrac{1  - tan \theta}{1 - cot \theta} \right)}^{2} =  {tan}^{2} \theta \\  \\

SOLUTION :-

 \\  \sf \: (1) \:  \dfrac{1 +  {tan}^{2} \theta }{1 +  {cot}^{2} \theta }  \\  \\  \boxed{ \sf \: 1 +   {tan}^{2} \theta  =  {sec}^{2} \theta } \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \:1 +  {cot}^{2}  \theta =  {sec}^{2} \theta  } \\

Putting values , we get...

 \\  \implies \sf \:  \dfrac{ {sec}^{2}   \theta}{ {cosec}^{2}  \theta}  \\  \\  \boxed{ \sf \: sec \theta =  \dfrac{1}{cos \theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \: cosec \theta =  \dfrac{1}{sin \theta} } \\

Putting values , we get...

 \\  \sf \implies \:  \dfrac{ \dfrac{1}{ {cos}^{2}  \theta} }{ \dfrac{1}{ {sin}^{2} \theta } }  \\  \\  \implies \sf \:  \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  \\  \\  \boxed{ \sf \: \frac{sin \theta}{cos \theta} = tan \theta  } \\

Putting values , we get ...

 \\  \implies   \boxed{\boxed{ \sf \:  {tan}^{2}  \theta}} \:   \:  \:  \:  \: -  -  - (i) \\  \\

  \\  \sf \: (2) \:  \:  \:  \:  \:   { \left(  \dfrac{1 -  {tan}^{} \theta }{1 - cot \theta} \right)}^{2} \\  \\  \boxed{ \sf \:tan \theta =  \dfrac{sin \theta}{cos \theta}  } \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \: cot  \theta=  \dfrac{cos \theta}{sin \theta} } \\

Putting values , we get...

 \\  \sf  \implies   { \left(  \dfrac{1 -  \dfrac{sin \theta }{cos \theta} }{1 -  \dfrac{cos \theta}{sin \theta} } \right)}^{2}  \\  \\  \\  \implies \sf   { \left( \dfrac{ \dfrac{cos \theta - sin \theta}{cos \theta} }{ \dfrac{sin  \theta- cos \theta}{sin \theta} }  \right)}^{2}

 \\  \implies \sf  { \left(  \dfrac{sin \theta(cos \theta - sin \theta)}{cos \theta(sin \theta - cos \theta)} \right)}^{2}  \\  \\  \\  \implies \sf  \dfrac{( {sin \theta)}^{2}( {cos  \theta- sin \theta)}^{2}  }{ {(cos \theta)}^{2} (sin \theta -  {cos \theta)}^{2} }  \\  \\   \\ \boxed{ \sf \:  \dfrac{sin \theta}{cos \theta} = tan \theta } \\

Putting values we get...

 \\   \implies \sf \:  {tan}^{2} \theta  \left(  \dfrac{ {cos}^{2} \theta +  {sin}^{2} \theta   - 2sin \theta.cos \theta}{ {sin}^{2} \theta  +  {cos}^{2}  \theta- 2sin \theta.cos  \theta } \right) \\ \\   \\  \boxed{ \sf \:  {sin}^{2} \theta  +  {cos}^{2} \theta  = 1} \\

Putting values we get...

 \\  \implies \sf \:  {tan}^{2} \theta   \cancel{\left(  \dfrac{1 - 2sin \theta.cos \theta}{1 -2 sin \theta.cos \theta} \right)} \\  \\   \\  \implies \boxed{  \boxed{\sf \:  {tan}^{2}  \theta } }\:  \:  \:  \:  -  -  -  - (ii) \\  \\

Hence , From equation (i) and (ii)..

 \\  \\  \underline{ \boxed{ \bf \:  \dfrac{1 +  {tan}^{2}  \theta}{1 +  {cot}^{2} \theta } =  { \left(  \dfrac{1 - tan \theta}{1 - cot \theta} \right)}^{2}  =  {tan}^{2}  \theta }}

Similar questions