Math, asked by LEGEND28480, 1 year ago

Prove that:-
 \frac{ {2}^{n}  +  {2}^{n - 1} }{ {2}^{n + 1} -  {2}^{n}  }  =  \frac{3}{2}
Plz Fast
And no SPAMS​

Answers

Answered by vinit2741
2

Step-by-step explanation:

2 {}^{n}  + 2 {}^{n  -  1}  \div 2 {}^{n + 1}  - 2 {}^{n}

=

 2 {}^{n} (1 +  \frac{1}{2} ) \div 2 {}^{n} (2 - 1)

=

 \frac{3}{2}  \div 1

=

 \frac{3}{2}

Answered by Pranavbali
2

there u goo

2

n

+2

n−1

÷2

n+1

−2

n

=

2 {}^{n} (1 + \frac{1}{2} ) \div 2 {}^{n} (2 - 1)2

n

(1+

2

1

)÷2

n

(2−1)

=

\frac{3}{2} \div 1

2

3

÷1

=

\frac{3}{2}

2

3

Similar questions