Prove that
![\frac{3}{2 \sqrt{5} } \frac{3}{2 \sqrt{5} }](https://tex.z-dn.net/?f=+%5Cfrac%7B3%7D%7B2+%5Csqrt%7B5%7D+%7D+)
is irrational.
Answers
Answered by
2
Hello ,
****
![let \: \frac{3}{ \sqrt[2]{5} } is \: an \: rational \: number \\ \\ \frac{3}{ \sqrt[2]{5} } = \frac{a}{b} \\ \sqrt[2]{5} = \frac{3b}{a} \\ \\ integer = fraction \\ \\ \\ so \: our \: assumption \: is \: wrong \\ \\ \: \frac{3}{ \sqrt[2]{5} } is \: an \: irrational \: number let \: \frac{3}{ \sqrt[2]{5} } is \: an \: rational \: number \\ \\ \frac{3}{ \sqrt[2]{5} } = \frac{a}{b} \\ \sqrt[2]{5} = \frac{3b}{a} \\ \\ integer = fraction \\ \\ \\ so \: our \: assumption \: is \: wrong \\ \\ \: \frac{3}{ \sqrt[2]{5} } is \: an \: irrational \: number](https://tex.z-dn.net/?f=+let+%5C%3A+%5Cfrac%7B3%7D%7B+%5Csqrt%5B2%5D%7B5%7D+%7D++is+%5C%3A+an+%5C%3A+rational+%5C%3A+number+%5C%5C+%5C%5C+%5Cfrac%7B3%7D%7B+%5Csqrt%5B2%5D%7B5%7D+%7D+%3D+%5Cfrac%7Ba%7D%7Bb%7D+%5C%5C+%5Csqrt%5B2%5D%7B5%7D+%3D+%5Cfrac%7B3b%7D%7Ba%7D+%5C%5C+%5C%5C+integer+%3D+fraction+%5C%5C+%5C%5C+%5C%5C+so+%5C%3A+our+%5C%3A+assumption+%5C%3A+is+%5C%3A+wrong+%5C%5C+%5C%5C+%5C%3A+%5Cfrac%7B3%7D%7B+%5Csqrt%5B2%5D%7B5%7D+%7D+is+%5C%3A+an+%5C%3A+irrational+%5C%3A+number)
****
mark me as a brainlist and follow me then i will follow you BACK
****
****
mark me as a brainlist and follow me then i will follow you BACK
Anonymous:
mark me as a brainlist and follow me then i will follow you BACK
Similar questions
Math,
7 months ago
Math,
1 year ago
Computer Science,
1 year ago
Accountancy,
1 year ago
Math,
1 year ago