Math, asked by avatar29, 1 year ago

Prove that :-
 \frac{ {3}^{n} +  {3}^{n - 1}  }{ {3}^{n + 1}  -  {3}^{n} }  =  \frac{2}{3}

Answers

Answered by Anonymous
2

Prove that :-

 \frac{ {3}^{n} + {3}^{n - 1} }{ {3}^{n + 1} - {3}^{n} } = \frac{2}{3}

Explanation:-

we have LHS:-

 = \frac{ {3}^{n} + {3}^{n - 1} }{ {3}^{n + 1} - {3}^{n} }

 =  \frac{ {3}^{n} +  {3}^{n} \div 3  }{ {3}^{n}  \times 3 -  {3}^{n} }

 =   \frac{ {3}^{n}  +  \frac{ {3}^{n} }{3} }{ {3}^{n}  \times 3 -  {3}^{n} }

 =   \frac{ {3}^{n}(1 +  \frac{1}{3}  )}{ {3}^{n}(3 - 1) }

 =  \frac{ \frac{3 + 1}{3} }{(3 - 1)}

 =  \frac{4}{3 \times 2}

 =  \frac{2}{3}  = rhs

Answered by EvilQueen01
6

Answer:

________________________________

________________

_________

____

Solution:-

_____________

⭐Plz refer to attached ⭐

hope helps✊

Attachments:
Similar questions