Math, asked by Flash1111, 1 year ago

Prove that
\frac{a {}^{ - 1} }{a {}^{ - 1}  + b {}^{ - 1}  } +  \frac{a {}^{ - 1} }{a {}^{ - 1} - b {}^{ - 1}  }  =  \frac{2b {}^{2} }{b {}^{2} -  a {}^{2} }
with steps

Answers

Answered by sushant2505
6
HEYA !

To prove :

\frac{a {}^{ - 1} }{a {}^{ - 1} + b {}^{ - 1} } + \frac{a {}^{ - 1} }{a {}^{ - 1} - b {}^{ - 1} } = \frac{2b {}^{2} }{b {}^{2} - a {}^{2} } \\
Let's Start with LHS , We have

LHS

=\frac{a {}^{ - 1} }{a {}^{ - 1} + b {}^{ - 1} }+ \frac{a {}^{ - 1} }{a {}^{ - 1} - b {}^{ - 1} } \\ \\ = \frac{ \frac{1}{a} }{ \frac{1}{a} + \frac{1}{b} } + \frac{ \frac{1}{a} }{ \frac{1}{a} - \frac{1}{b} } \: \: \: \: \: \: \biggl \{ \: \: \because {p}^{ - 1} = \frac{1}{p} \: \: \biggl\} \\ \\ = \frac{ \frac{1}{a} }{ \frac{b + a}{ab} } + \frac{ \frac{1}{a} }{ \frac{b - a}{ab} } \\ \\ = \frac{ab}{a(b + a)} + \frac{ab}{a(b - a)} \\ \\ = \frac{b}{b + a} + \frac{b}{b - a} \\ \\ = \frac{b(b - a) + b(b + a)}{(b + a)(b - a)} \\ \\ = \frac{ {b}^{2} - ab + {b}^{2} + ab}{ {b}^{2} - {a}^{2} } \\ \\ = \frac{2 {b}^{2} }{ {b}^{2} - {a}^{2} } \\
= RHS [ Proved ]
Similar questions