Math, asked by kukusaini74510, 4 months ago

Prove that
 \frac{ \cos(a) }{1 +  \sin(a) }  +   \frac{1 +  \sin(a) }{ \cos(a) }  = 2 \sec(a)

Answers

Answered by psupriya789
0

Answer:

Hope it helps u :)

Step-by-step explanation:

LHS =cos A/(1+sin A) +(1+sin A)/cos A

={cos²A +(1+sin A)²}/cos A.(1+sin A)

={cos²A+1+sin²A+2sin A}/cos A.(1+sin A)

use sin²∅ +cos²∅ =1

=(1+1+2sin A)/cos A(1+sinA)

=2(1+sin A)/cos A(1+sin A)

=2/cos A

=2sec A = RHS

MARK AS BRAINLIEST

Answered by mayank6343
2

Step-by-step explanation:

taking LHS

 \frac{cosa}{1 + sina}  +  \frac{1 + sina}{cosa}  \\  \frac{ {(cosa)}^{2}  +  {(1 + sina)}^{2} } {(1 + sina)(cosa)}  \\  \frac{{cos}^{2}a + 1 +  {sin}^{2}a + 2sina  }{(1 + sina)(cosa)}  \\   \frac{{cos}^{2}a +  {sin}^{2}a  + 1+ 2sina  }{(1 + sina)(cosa)}  \\ \frac{1 + 1 + 2sina  }{(1 + sina)(cosa)}  \\ \frac{2 + 2sina  }{(1 + sina)(cosa)}  \\  \frac{2(1 + sina)}{(1 + sina)(cosa)}  \\  \frac{2}{cosa}  \\ 2 \times seca \\ 2seca

hence proved

hope it helps and please mark as brainliest

Similar questions
Math, 4 months ago