Prove that = cos A.
Answers
Answered by
3
we know, from trigonometric concepts
cos(π - A) = -cosA
cos(-A) = cosA
cot(π/2 + A) = -tanA
tan(π + A) = tanA
tan(3π/2 + A) = -cotA
sin(2π - A) = -sinA
now, LHS = {cos(π- A)cot(π/2 + A) cos(-A)}/{tan(π + A) tan(3π/2 + A) sin(2π - A)}
= {(-cosA)(-tanA)cosA}/{tanA(cotA)(-sinA)}
= {-cos²A}/{-cotAsinA}
= {cos²A}/{cosA/sinA × sinA}
= cosA = RHS
cos(π - A) = -cosA
cos(-A) = cosA
cot(π/2 + A) = -tanA
tan(π + A) = tanA
tan(3π/2 + A) = -cotA
sin(2π - A) = -sinA
now, LHS = {cos(π- A)cot(π/2 + A) cos(-A)}/{tan(π + A) tan(3π/2 + A) sin(2π - A)}
= {(-cosA)(-tanA)cosA}/{tanA(cotA)(-sinA)}
= {-cos²A}/{-cotAsinA}
= {cos²A}/{cosA/sinA × sinA}
= cosA = RHS
Answered by
1
HELLO DEAR,
WE KNOW:-cos(π - A) = -cosA
cos(-A) = cosA , cot(π/2 + A) = -tanA
tan(π + A) = tanA
tan(3π/2 + A) = -cotA
sin(2π - A) = -sinA
now,
{cos(π- A)cot(π/2 + A) cos(-A)}/{tan(π + A) tan(3π/2 + A) sin(2π - A)}
=> {(-cosA)(-tanA)cosA}/{tanA(cotA)(-sinA)}
=> {-cos²A}/{-cotAsinA}
=> {cos²A}/{cosA/sinA * sinA}
=> cosA
I HOPE IT'S HELP YOU DEAR,
THANKS
WE KNOW:-cos(π - A) = -cosA
cos(-A) = cosA , cot(π/2 + A) = -tanA
tan(π + A) = tanA
tan(3π/2 + A) = -cotA
sin(2π - A) = -sinA
now,
{cos(π- A)cot(π/2 + A) cos(-A)}/{tan(π + A) tan(3π/2 + A) sin(2π - A)}
=> {(-cosA)(-tanA)cosA}/{tanA(cotA)(-sinA)}
=> {-cos²A}/{-cotAsinA}
=> {cos²A}/{cosA/sinA * sinA}
=> cosA
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions