Math, asked by ballaneypranav, 1 year ago

Prove that: \frac{Q^{2} - 1}{Q^2 + 1} + cosA = 0 
If Q = cosA - cotA


karthik4297: given condition is wrong it will be 'Q=cosecA-cotA'
ballaneypranav: Yeah probably it is. I can solve with cosec.
ballaneypranav: Okay, yeah. I put in values and checked. The question is wrong. Thanks anyway :D

Answers

Answered by karthik4297
2
Δ Given,
                Q = cosecA - cotA
on squaring both side ,
  Q^{2} =  (cosecA-cotA)^{2}  \\ = ( \frac{1-cosA}{sinA}) ^{2}  \\ Q^{2}  =  \frac{ (1-cosA)^{2} }{(1- cos^{2}A) }  \\  Q^{2} = \frac{(1-cosA)(1-cosA)}{(1-cosA)(1+cosA)} \\  Q^{2} = \frac{1-cosA}{1+cosA}   
 Q^{2} .(1+cosA)=1-cosA \\  Q^{2} + Q^{2} .cosA-1+cosA=0 \\  Q^{2} -1+ cosA(Q^{2} +1)=0 \\  \frac{ Q^{2}-1 }{ Q^{2}+1 } +cosA =0
Similar questions