Prove That ,
Answers
Answered by
11
Step-by-step explanation:
(sin5x-2sin3x+sinx)/(cos5x-cosx)
=[{2sin(5x+x)/2cos(5x-x)/2}-2sin3x]/{2sin(5x+x)/2sin(x-5x)/2}
=(2sin3xcos2x-2sin3x)/{2sin3xsin(-2x)}
={2sin3x(cos2x-1)}/{-2sin3xsin2x}
=-(cos2x-1)/sin2x
=(1-cos2x)/sin2x
=2sin²x/2sinxcosx
=sinx/cosx
=tanx (Proved)
Answered by
111
↪Solution↩
sin5x-2sin3x+sinx)/(cos5x-cosx)
=> [{2sin(5x+x)/2cos(5x-x)/2}-2sin3x]/{2sin(5x+x)/2sin(x-5x)/2}
=> (2sin3xcos2x-2sin3x)/{2sin3xsin(-2x)}
=> {2sin3x(cos2x-1)}/{-2sin3xsin2x}
=> -(cos2x-1)/sin2x
=> (1-cos2x)/sin2x
=> 2sin²x/2sinxcosx
=> sinx/cosx
=> tanx (Proved)
Similar questions