Math, asked by Anonymous, 7 months ago

Prove that
  \frac{ \sin(5x) - 2 \sin(3x) +  \sin(x)   }{ \cos(5x) -  \cos(x)  }  =  \tan(x)

Answers

Answered by shomekeyaroy79
2

\small\bf \colorbox{green}{Verified Answer}

We use sin A + sin B = 2 sin (A+B)/2 Cos (A_B)/2

cos A - cos B = - 2 sin (A+B)/2 Sin(A-B)/2

Combine sin5x and sinx in the numerator. And combine cos5x and cosx in the denom.

\begin{gathered}\frac{sin5x-2sin3x+sinx}{cos5x-cosx}=\\\\\frac{2sin3x\ cos2x-2sin3x}{-2sin(3x)sin(2x)}\\\\=\frac{1-cos2x}{sinx}\\\\=\frac{2sin^2x}{2sinxcosx}=tanx\end{gathered}

Similar questions