Math, asked by Rookie10, 2 months ago

Prove that:
 \frac{sin \: a}{1 + cos \: a}  +  \frac{sin \: a}{1 - cos \: a}  = 2cosec \: a

Answers

Answered by BrainlyYuVa
26

Solution

To Prove :-

  • (sin a)/(1 + cos a) + (sin a )/(1 - cos a) = 2 cosec a

Prove

Take first L.H.S.

= (sin a)/(1 + cos a) + (sin a )/(1 - cos a)

Here ( 1 - cos² a) be LCM of these fraction

= [(sin a )( 1 - cos a) + (sin a )( 1 + cos a)]/(1 - cos² a)

We Know,

( sin ² a + cos² a = 1)

= (sin a - sin a . cos a + sin a + sin a . cos a )/sin ² a

= 2 sin a / sin² a

= 2/sin a

We Know,

1/sin a = cosec a

= 2 cosec a

That's proved

___________________

= R.H.S.

Answered by AestheticSky
25

L.H.S:-

:\implies\sf\dfrac{SinA}{1+CosA} + \sf\dfrac{SinA}{1-CosA}

:\implies\sf\dfrac{SinA(1-CosA)+SinA(1+CosA}{(1+CosA)(1-CosA)}

:\implies\sf\dfrac{SinA-SinA.CosA+SinA+SinA.CosA}{1-Cos²A}

:\implies\sf\dfrac{2SinA}{Sin²A} ... {1-Cos²A = Sin²A}

:\implies\sf\dfrac{2}{SinA} = \sf 2CosecA = R.H.S

Hence, proved !!

Similar questions