Math, asked by ookitkatoo, 2 months ago

prove that

 \frac{ \sin \: a  \tan \: a }{1 -  \cos \: a}  = 1 +  \sec \: a

no spam ❌❌❌​

Answers

Answered by BrainlyGovind
8

Answer:

 \frac{ \sin \: a \:  \tan \: a  }{1 -   \cos \: a }  =  \frac{  { \sin \: a }^{2}  }{ \cos \: a \: (1 -  \cos \: a) }  \\  =  \frac{1 -  { \cos}^{2}  \: a}{ \cos \: a \: ( 1 -  \cos \: a) }  \\  =  \frac{1 +  \cos \: a }{ \cos \: a }  \\  =  \frac{ \sin \: a \:  \tan \: a }{1 -  \cos \: a}  = 1 +  \sec \: a

hence proved

hope it helps you ✅✅✅

Answered by manish87266666
21

Answer:

In this type of question first you have to change tan \a\a

in \bold{ \frac{sina}{cosa} }

cosa

sina

form then you have to use the suitable identity.

\bold{ tan \: a \: = \frac{sin \: a}{cos \: a} }tana=

cosa

sina

Identity used :-

\bold{{ \sin}^{2} a = 1 - {cos}^{2} a }sin

2

a=1−cos

2

a

Dear!! User kindly refer to attachment.

Step-by-step explanation:

make me brainlist

Similar questions