Math, asked by vrushabh8839, 11 months ago

prove that
 \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  +  \frac{1  +  \cos( \alpha )  }{ \sin( \alpha ) }  = 2cosec \alpha

Answers

Answered by bijitkalita48
1

Step-by-step explanation:

hey mate here is ur answer...one thing u have to correct in the question...if 1+cos alpha ..then the another is also be + not - ..if we consider - then we get different ansr ..so correct the question...

Attachments:
Answered by Anonymous
136

Answer

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Dividing numerator and denominator by sin θ

 \tt \: ⇒\frac{ \frac{2 \sin( \alpha ) - \cos( \alpha ) }{ \sin( \alpha ) } }.  { \frac{ \cos( \alpha ) + \sin( \alpha ) }{ \sin( \alpha ) } } = 1</p><p>⇒ </p><p>sin(α)/</p><p>cos(α)+sin(α)

sin(α)

2sin(α)−cos(α)

=1

 \tt⇒ \frac{2 - \cot( \alpha ) }{1 + \cot( \alpha ) } = 1⇒ </p><p>1+cot(α)/2−cot(α)

 \tt \: ⇒2 - \cot( \alpha ) = 1 + \cot( \alpha )⇒2−cot(α)=1+cot(α)

 \tt \: ⇒ \cot( \alpha ) = \frac{1}{2}⇒cot(α)= 1/2

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Hope it's Helpful.....:)

Similar questions