Prove that
Answers
Step-by-step explanation:
Solution :-
On taking LHS
(Sin ɣ + Sin 3 ɣ + Sin 5ɣ+ Sin 7ɣ) /
(Cos ɣ+Cos 3ɣ+Cos 5 ɣ + Cos 7 ɣ)
It can be rearranged as
=>[ (Sin ɣ + Sin 7 ɣ )+( Sin 3ɣ+ Sin 5ɣ) ]/
[(Cos ɣ+Cos 7ɣ)+(Cos 3ɣ + Cos 5 ɣ)]
=> [ (Sin 7ɣ + Sin ɣ )+( Sin 5ɣ+ Sin 3ɣ) ]/
[(Cos 7ɣ+Cos ɣ)+(Cos 5ɣ + Cos 3ɣ)]
We know that
Sin C + Sin D = 2 Sin (C+D)/2 Cos (C-D)/2
and
Cos C+Cos D = 2 Cos (C+D)/2 Cos(C-D)/2
Now
Sin 7 ɣ + Sin ɣ
=> 2 Sin (7 ɣ+ɣ )/2 Cos (7 ɣ -ɣ)/2
=> 2 Sin (8 ɣ)/2 Cos (6 ɣ)/2
=> 2 Sin 4 ɣ Cos 3 ɣ
and
Sin 5ɣ + Sin 3 ɣ
=> 2 Sin (5 ɣ+3ɣ )/2 Cos (5ɣ -3ɣ)/2
=> 2 Sin (8 ɣ)/2 Cos (2ɣ)/2
=> 2 Sin 4 ɣ Cos ɣ
Now,
(Sin 7 ɣ + Sin ɣ )+(Sin 5ɣ + Sin 3 ɣ )
=> 2 Sin 4 ɣ Cos 3 ɣ+2 Sin 4 ɣ Cos ɣ
=> 2 Sin 4 ɣ (Cos 3ɣ+Cos ɣ) ---------------(1)
and
Cos 7 ɣ + Cos ɣ
=> 2 Cos (7 ɣ+ɣ )/2 Cos (7 ɣ -ɣ)/2
=> 2 Cos (8 ɣ)/2 Cos (6 ɣ)/2
=> 2 Cos 4 ɣ Cos 3 ɣ
and
Cos 5ɣ + Cos 3 ɣ
=> 2 Cos (5 ɣ+3ɣ )/2 Cos (5ɣ -3ɣ)/2
=> 2 Cos (8 ɣ)/2 Cos (2ɣ)/2
=> 2 Cos 4 ɣ Cos ɣ
Now,
(Cos 7 ɣ + Cos ɣ )+(Cos5ɣ + Cos 3 ɣ )
=> 2 Cos 4 ɣ Cos 3 ɣ+2 Cos4 ɣ Cos ɣ
=> 2 Cos 4 ɣ (Cos 3ɣ+Cos ɣ) -----------(2)
Now
From (1)&(2)
We have
=>[ 2 Sin 4 ɣ (Cos 3ɣ+Cos ɣ)] /
[2 Cos 4 ɣ (Cos 3ɣ+Cos ɣ)]
On cancelling (Cos 3ɣ+Cos ɣ) then
=> 2 Sin 4 ɣ / 2 Cos 4 ɣ
=> Sin 4 ɣ / Cos 4 ɣ
=> Tan 4 ɣ
Since Tan A = Sin A / Cos A
=> RHS
LHS = RHS
(Sin ɣ + Sin 3 ɣ + Sin 5ɣ+ Sin 7ɣ) /
(Cos ɣ+Cos 3ɣ+Cos 5ɣ + Cos 7ɣ) =Tan 4ɣ
Hence, Proved.
Used formulae:-
→ SinC + SinD = 2 Sin (C+D)/2 Cos (C-D)/2
→ CosC+CosD = 2 Cos(C+D)/2 Cos(C-D)/2
→ Tan A = Sin A / Cos A
→ ɣ = gamma (Greek alphabet )