prove that,
![\frac{ \sin \: theta \: - \cos \: theta + 1} { \sin \: theta \: + \cos \: theta - 1} = \frac{1}{ \sec \: theta - \tan \: theta } \frac{ \sin \: theta \: - \cos \: theta + 1} { \sin \: theta \: + \cos \: theta - 1} = \frac{1}{ \sec \: theta - \tan \: theta }](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csin+%5C%3A+theta+%5C%3A++-++%5Ccos+%5C%3A+theta++%2B+1%7D+%7B+%5Csin+%5C%3A+theta+%5C%3A+++%2B+++%5Ccos+%5C%3A+theta++-+1%7D++%3D++%5Cfrac%7B1%7D%7B+%5Csec+%5C%3A+theta+-+++%5Ctan+%5C%3A+theta+%7D+)
Answers
Answered by
42
Step-by-step explanation:
Let us prove by simplifying LHS and RHS separately.
By Rationalising the denominator:-
By rationalising:-
LHS = RHS
Hence Proved
Similar questions