Math, asked by rohitkumarwadwale, 6 months ago

prove that,
 \frac{ \sin \: theta \:  -  \cos \: theta  + 1} { \sin \: theta \:   +   \cos \: theta  - 1}  =  \frac{1}{ \sec \: theta -   \tan \: theta }

Answers

Answered by MaIeficent
42

Step-by-step explanation:

\bf{\underline{\underline\red{To\:Prove:-}}}

  • \rm \dfrac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1}  =  \dfrac{1}{sec \theta - tan \theta}

\bf{\underline{\underline\green{Proof:-}}}

Let us prove by simplifying LHS and RHS separately.

\rm  LHS = \dfrac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1}

By Rationalising the denominator:-

\rm   =  \dfrac{sin \theta - cos \theta + 1}{sin \theta + cos \theta - 1}   \times \dfrac{sin \theta  +  cos \theta + 1}{sin \theta + cos \theta  + 1}

\rm   =  \dfrac{sin \theta  + 1  - cos \theta }{sin \theta + cos \theta  - 1}   \times \dfrac{sin \theta  + 1 +  cos \theta }{sin \theta + cos \theta  + 1}

\rm   =  \dfrac{(sin \theta  + 1  - cos \theta)(sin \theta  + 1 +  cos \theta) }{(sin \theta + cos \theta  - 1)(sin \theta + cos \theta  + 1)}

\rm   =  \dfrac{ (sin \theta  + 1) ^{2}   -( cos \theta) ^{2}   }{(sin \theta + cos \theta )^{2}   -  {(1)}^{2} }  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \bigg(  \because(a + b)(a - b) =  {a}^{2}  -  {b}^{2}   \bigg)

\rm   =  \dfrac{ sin^{2} \theta  + 2sin \theta  + 1   -cos ^{2}  \theta  }{sin^{2}  \theta + cos ^{2}  \theta  + 2sin \theta cos \theta-  1}

\rm   =  \dfrac{ sin^{2} \theta  + 2sin \theta  + sin ^{2}  \theta  }{1 + 2sin \theta cos \theta-  1} \:  \:  \:  \:  \bigg( \because  {sin}^{2}  \theta +  {cos}^{2}  \theta = 1  \implies {sin}^{2} \theta = 1 -  {cos}^{2} \theta  \bigg)

\rm   =  \dfrac{ 2sin^{2} \theta  + 2sin \theta    }{ 2sin \theta cos \theta}

\rm   =  \dfrac{ 2sin \theta(sin \theta  + 1)  }{ 2sin \theta cos \theta}

\rm   =  \dfrac{ \cancel{ 2sin \theta} \: (sin \theta  + 1)  }{  \cancel{2sin \theta} \:  cos \theta}

\rm   =  \dfrac{  sin \theta  + 1  }{ cos \theta}

\rm   =  \dfrac{  sin \theta    }{ cos \theta}  +  \dfrac{1}{cos \theta}

\rm   =   tan\theta  +  sec \theta

\rm   =   sec\theta  +  tan \theta

By rationalising:-

\rm   =   sec\theta  +  tan \theta  \times  \bigg( \dfrac{sec \theta - tan \theta}{sec \theta - tan \theta }    \bigg)

\rm   =     \dfrac{sec^{2} \theta - tan^{2}  \theta}{sec \theta - tan \theta }

\rm   =     \dfrac{1}{sec \theta - tan \theta } =RHS \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \because {sec}^{2}     \theta -  {tan}^{2} \theta = 1 \bigg)

LHS = RHS

Hence Proved

Similar questions